cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332279 Number of widely totally normal compositions of n.

This page as a plain text file.
%I A332279 #8 Mar 09 2020 18:26:18
%S A332279 1,1,1,3,4,6,12,22,29,62,119,208,368,650,1197,2173,3895,7022,12698,
%T A332279 22940,41564
%N A332279 Number of widely totally normal compositions of n.
%C A332279 A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
%C A332279 A composition of n is a finite sequence of positive integers with sum n.
%F A332279 For n > 1, a(n) = A332296(n) - 1.
%e A332279 The a(1) = 1 through a(7) = 22 compositions:
%e A332279   (1)  (11)  (12)   (112)   (122)    (123)     (1123)
%e A332279              (21)   (121)   (212)    (132)     (1132)
%e A332279              (111)  (211)   (221)    (213)     (1213)
%e A332279                     (1111)  (1121)   (231)     (1231)
%e A332279                             (1211)   (312)     (1312)
%e A332279                             (11111)  (321)     (1321)
%e A332279                                      (1212)    (2113)
%e A332279                                      (1221)    (2122)
%e A332279                                      (2112)    (2131)
%e A332279                                      (2121)    (2212)
%e A332279                                      (11211)   (2311)
%e A332279                                      (111111)  (3112)
%e A332279                                                (3121)
%e A332279                                                (3211)
%e A332279                                                (11221)
%e A332279                                                (12112)
%e A332279                                                (12121)
%e A332279                                                (12211)
%e A332279                                                (21121)
%e A332279                                                (111211)
%e A332279                                                (112111)
%e A332279                                                (1111111)
%e A332279 For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
%t A332279 recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
%t A332279 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]
%Y A332279 Normal compositions are A107429.
%Y A332279 Constantly recursively normal partitions are A332272.
%Y A332279 The case of partitions is A332277.
%Y A332279 The case of reversed partitions is (also) A332277.
%Y A332279 The narrow version is A332296.
%Y A332279 The strong version is A332337.
%Y A332279 The co-strong version is (also) A332337.
%Y A332279 Cf. A001462, A181819, A182850, A317081, A317245, A317491, A329744, A332276, A332289, A332292, A332295, A332297, A332336, A332340.
%K A332279 nonn,more
%O A332279 0,4
%A A332279 _Gus Wiseman_, Feb 12 2020