This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332279 #8 Mar 09 2020 18:26:18 %S A332279 1,1,1,3,4,6,12,22,29,62,119,208,368,650,1197,2173,3895,7022,12698, %T A332279 22940,41564 %N A332279 Number of widely totally normal compositions of n. %C A332279 A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths. %C A332279 A composition of n is a finite sequence of positive integers with sum n. %F A332279 For n > 1, a(n) = A332296(n) - 1. %e A332279 The a(1) = 1 through a(7) = 22 compositions: %e A332279 (1) (11) (12) (112) (122) (123) (1123) %e A332279 (21) (121) (212) (132) (1132) %e A332279 (111) (211) (221) (213) (1213) %e A332279 (1111) (1121) (231) (1231) %e A332279 (1211) (312) (1312) %e A332279 (11111) (321) (1321) %e A332279 (1212) (2113) %e A332279 (1221) (2122) %e A332279 (2112) (2131) %e A332279 (2121) (2212) %e A332279 (11211) (2311) %e A332279 (111111) (3112) %e A332279 (3121) %e A332279 (3211) %e A332279 (11221) %e A332279 (12112) %e A332279 (12121) %e A332279 (12211) %e A332279 (21121) %e A332279 (111211) %e A332279 (112111) %e A332279 (1111111) %e A332279 For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20). %t A332279 recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]]; %t A332279 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}] %Y A332279 Normal compositions are A107429. %Y A332279 Constantly recursively normal partitions are A332272. %Y A332279 The case of partitions is A332277. %Y A332279 The case of reversed partitions is (also) A332277. %Y A332279 The narrow version is A332296. %Y A332279 The strong version is A332337. %Y A332279 The co-strong version is (also) A332337. %Y A332279 Cf. A001462, A181819, A182850, A317081, A317245, A317491, A329744, A332276, A332289, A332292, A332295, A332297, A332336, A332340. %K A332279 nonn,more %O A332279 0,4 %A A332279 _Gus Wiseman_, Feb 12 2020