This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332280 #19 Feb 16 2025 08:33:59 %S A332280 1,1,2,3,5,7,11,15,22,30,41,55,75,97,129,166,215,273,352,439,557,692, %T A332280 865,1066,1325,1614,1986,2413,2940,3546,4302,5152,6207,7409,8862, %U A332280 10523,12545,14814,17562,20690,24397,28615,33645,39297,46009,53609,62504,72581,84412 %N A332280 Number of integer partitions of n with unimodal run-lengths. %C A332280 First differs from A000041 at a(10) = 41, A000041(10) = 42. %C A332280 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence. %H A332280 Alois P. Heinz, <a href="/A332280/b332280.txt">Table of n, a(n) for n = 0..1000</a> %H A332280 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332280 The a(10) = 41 partitions (A = 10) are: %e A332280 (A) (61111) (4321) (3211111) %e A332280 (91) (55) (43111) (31111111) %e A332280 (82) (541) (4222) (22222) %e A332280 (811) (532) (42211) (222211) %e A332280 (73) (5311) (421111) (2221111) %e A332280 (721) (5221) (4111111) (22111111) %e A332280 (7111) (52111) (3331) (211111111) %e A332280 (64) (511111) (3322) (1111111111) %e A332280 (631) (442) (331111) %e A332280 (622) (4411) (32221) %e A332280 (6211) (433) (322111) %e A332280 Missing from this list is only (33211). %p A332280 b:= proc(n, i, m, t) option remember; `if`(n=0, 1, %p A332280 `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m), %p A332280 j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t))) %p A332280 end: %p A332280 a:= n-> b(n$2, 0, true): %p A332280 seq(a(n), n=0..65); # _Alois P. Heinz_, Feb 20 2020 %t A332280 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332280 Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}] %t A332280 (* Second program: *) %t A332280 b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]]; %t A332280 a[n_] := b[n, n, 0, True]; %t A332280 a /@ Range[0, 65] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A332280 The complement is counted by A332281. %Y A332280 Heinz numbers of these partitions are the complement of A332282. %Y A332280 Taking 0-appended first-differences instead of run-lengths gives A332283. %Y A332280 The normal case is A332577. %Y A332280 The opposite version is A332638. %Y A332280 Unimodal compositions are A001523. %Y A332280 Unimodal normal sequences are A007052. %Y A332280 Numbers whose unsorted prime signature is unimodal are A332288. %Y A332280 Cf. A007052, A025065, A072706, A100883, A115981, A227038, A317086, A328509, A329398, A332284, A332285, A332294, A332578, A332579. %K A332280 nonn %O A332280 0,3 %A A332280 _Gus Wiseman_, Feb 18 2020