This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332281 #16 Feb 16 2025 08:33:59 %S A332281 0,0,0,0,0,0,0,0,0,0,1,1,2,4,6,10,16,24,33,51,70,100,137,189,250,344, %T A332281 450,597,778,1019,1302,1690,2142,2734,3448,4360,5432,6823,8453,10495, %U A332281 12941,15968,19529,23964,29166,35525,43054,52173,62861,75842,91013,109208 %N A332281 Number of integer partitions of n whose run-lengths are not unimodal. %C A332281 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence. %H A332281 Alois P. Heinz, <a href="/A332281/b332281.txt">Table of n, a(n) for n = 0..1000</a> %H A332281 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332281 The a(10) = 1 through a(15) = 10 partitions: %e A332281 (33211) (332111) (44211) (44311) (55211) (44322) %e A332281 (3321111) (333211) (433211) (55311) %e A332281 (442111) (443111) (443211) %e A332281 (33211111) (3332111) (533211) %e A332281 (4421111) (552111) %e A332281 (332111111) (4332111) %e A332281 (4431111) %e A332281 (33321111) %e A332281 (44211111) %e A332281 (3321111111) %p A332281 b:= proc(n, i, m, t) option remember; `if`(n=0, 1, %p A332281 `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m), %p A332281 j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t))) %p A332281 end: %p A332281 a:= n-> combinat[numbpart](n)-b(n$2, 0, true): %p A332281 seq(a(n), n=0..65); # _Alois P. Heinz_, Feb 20 2020 %t A332281 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332281 Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}] %t A332281 (* Second program: *) %t A332281 b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]]; %t A332281 a[n_] := PartitionsP[n] - b[n, n, 0, True]; %t A332281 a /@ Range[0, 65] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A332281 The complement is counted by A332280. %Y A332281 The Heinz numbers of these partitions are A332282. %Y A332281 The opposite version is A332639. %Y A332281 Unimodal compositions are A001523. %Y A332281 Non-unimodal permutations are A059204. %Y A332281 Non-unimodal compositions are A115981. %Y A332281 Non-unimodal normal sequences are A328509. %Y A332281 Cf. A007052, A025065, A072706, A100883, A332283, A332284, A332286, A332287, A332579, A332638, A332640, A332641, A332642. %K A332281 nonn %O A332281 0,13 %A A332281 _Gus Wiseman_, Feb 19 2020