This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332282 #5 Feb 16 2025 08:33:59 %S A332282 300,588,600,980,1176,1200,1452,1500,1960,2028,2100,2205,2352,2400, %T A332282 2420,2904,2940,3000,3300,3380,3388,3468,3900,3920,4056,4116,4200, %U A332282 4332,4410,4704,4732,4800,4840,5100,5445,5700,5780,5808,5880,6000,6348,6468,6600,6615 %N A332282 Numbers whose unsorted prime signature is not unimodal. %C A332282 The unsorted prime signature of a positive integer (row n of A124010) is the sequence of exponents it is prime factorization. %C A332282 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332282 Also Heinz numbers of integer partitions with non-unimodal run-lengths. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A332282 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332282 The sequence of terms together with their prime indices begins: %e A332282 300: {1,1,2,3,3} %e A332282 588: {1,1,2,4,4} %e A332282 600: {1,1,1,2,3,3} %e A332282 980: {1,1,3,4,4} %e A332282 1176: {1,1,1,2,4,4} %e A332282 1200: {1,1,1,1,2,3,3} %e A332282 1452: {1,1,2,5,5} %e A332282 1500: {1,1,2,3,3,3} %e A332282 1960: {1,1,1,3,4,4} %e A332282 2028: {1,1,2,6,6} %e A332282 2100: {1,1,2,3,3,4} %e A332282 2205: {2,2,3,4,4} %e A332282 2352: {1,1,1,1,2,4,4} %e A332282 2400: {1,1,1,1,1,2,3,3} %e A332282 2420: {1,1,3,5,5} %e A332282 2904: {1,1,1,2,5,5} %e A332282 2940: {1,1,2,3,4,4} %e A332282 3000: {1,1,1,2,3,3,3} %e A332282 3300: {1,1,2,3,3,5} %e A332282 3380: {1,1,3,6,6} %t A332282 unimodQ[q_]:=Or[Length[q]==1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332282 Select[Range[1000],!unimodQ[Last/@FactorInteger[#]]&] %Y A332282 The opposite version is A332642. %Y A332282 These are the Heinz numbers of the partitions counted by A332281. %Y A332282 Non-unimodal permutations are A059204. %Y A332282 Non-unimodal compositions are A115981. %Y A332282 Non-unimodal normal sequences are A328509. %Y A332282 Cf. A001523, A007052, A056239, A112798, A124010, A227038, A332280, A332284, A332286, A332639, A332643, A332671. %K A332282 nonn %O A332282 1,1 %A A332282 _Gus Wiseman_, Feb 19 2020