This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332283 #12 Feb 16 2025 08:33:59 %S A332283 1,1,2,3,5,7,10,13,18,24,30,38,49,59,73,90,108,129,159,184,216,258, %T A332283 298,347,410,466,538,626,707,807,931,1043,1181,1351,1506,1691,1924, %U A332283 2132,2382,2688,2971,3300,3704,4073,4500,5021,5510,6065,6740,7362,8078 %N A332283 Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal. %C A332283 First differs from A000041 at a(6) = 10, A000041(6) = 11. %C A332283 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332283 Fausto A. C. Cariboni, <a href="/A332283/b332283.txt">Table of n, a(n) for n = 0..400</a> %H A332283 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>. %e A332283 The a(1) = 1 through a(7) = 13 partitions: %e A332283 (1) (2) (3) (4) (5) (6) (7) %e A332283 (11) (21) (22) (32) (33) (43) %e A332283 (111) (31) (41) (42) (52) %e A332283 (211) (221) (51) (61) %e A332283 (1111) (311) (222) (322) %e A332283 (2111) (321) (421) %e A332283 (11111) (411) (511) %e A332283 (3111) (2221) %e A332283 (21111) (3211) %e A332283 (111111) (4111) %e A332283 (31111) %e A332283 (211111) %e A332283 (1111111) %t A332283 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332283 Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}] %Y A332283 Unimodal compositions are A001523. %Y A332283 Unimodal normal sequences appear to be A007052. %Y A332283 Partitions with unimodal run-lengths are A332280. %Y A332283 Heinz numbers of partitions with non-unimodal run-lengths are A332282. %Y A332283 The complement is counted by A332284. %Y A332283 The strict case is A332285. %Y A332283 Heinz numbers of partitions not in this class are A332287. %Y A332283 Cf. A025065, A072706, A115981, A227038, A332288, A332577, A332638, A332642. %K A332283 nonn %O A332283 0,3 %A A332283 _Gus Wiseman_, Feb 19 2020