cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.

This page as a plain text file.
%I A332287 #9 Feb 16 2025 08:33:59
%S A332287 36,50,70,72,98,100,108,140,144,154,180,182,196,200,216,225,242,250,
%T A332287 252,280,286,288,294,300,308,324,338,350,360,363,364,374,392,396,400,
%U A332287 418,429,432,441,442,450,462,468,484,490,494,500,504,507,540,550,560,561
%N A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.
%C A332287 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
%C A332287 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.
%H A332287 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>
%e A332287 The sequence of terms together with their prime indices begins:
%e A332287    36: {1,1,2,2}
%e A332287    50: {1,3,3}
%e A332287    70: {1,3,4}
%e A332287    72: {1,1,1,2,2}
%e A332287    98: {1,4,4}
%e A332287   100: {1,1,3,3}
%e A332287   108: {1,1,2,2,2}
%e A332287   140: {1,1,3,4}
%e A332287   144: {1,1,1,1,2,2}
%e A332287   154: {1,4,5}
%e A332287   180: {1,1,2,2,3}
%e A332287   182: {1,4,6}
%e A332287   196: {1,1,4,4}
%e A332287   200: {1,1,1,3,3}
%e A332287   216: {1,1,1,2,2,2}
%e A332287   225: {2,2,3,3}
%e A332287   242: {1,5,5}
%e A332287   250: {1,3,3,3}
%e A332287   252: {1,1,2,2,4}
%e A332287   280: {1,1,1,3,4}
%e A332287 For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence.
%t A332287 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A332287 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
%t A332287 Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&]
%Y A332287 The enumeration of these partitions by sum is A332284.
%Y A332287 Not assuming the last part is zero gives A332725.
%Y A332287 Non-unimodal permutations are A059204.
%Y A332287 Non-unimodal compositions are A115981.
%Y A332287 Non-unimodal normal sequences are A328509.
%Y A332287 Partitions with non-unimodal run-lengths are A332281.
%Y A332287 Cf. A001523, A007052, A332280, A332282, A332283, A332285, A332286, A332288, A332294, A332579, A332639, A332642.
%K A332287 nonn
%O A332287 1,1
%A A332287 _Gus Wiseman_, Feb 21 2020