This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332287 #9 Feb 16 2025 08:33:59 %S A332287 36,50,70,72,98,100,108,140,144,154,180,182,196,200,216,225,242,250, %T A332287 252,280,286,288,294,300,308,324,338,350,360,363,364,374,392,396,400, %U A332287 418,429,432,441,442,450,462,468,484,490,494,500,504,507,540,550,560,561 %N A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal. %C A332287 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332287 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions. %H A332287 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332287 The sequence of terms together with their prime indices begins: %e A332287 36: {1,1,2,2} %e A332287 50: {1,3,3} %e A332287 70: {1,3,4} %e A332287 72: {1,1,1,2,2} %e A332287 98: {1,4,4} %e A332287 100: {1,1,3,3} %e A332287 108: {1,1,2,2,2} %e A332287 140: {1,1,3,4} %e A332287 144: {1,1,1,1,2,2} %e A332287 154: {1,4,5} %e A332287 180: {1,1,2,2,3} %e A332287 182: {1,4,6} %e A332287 196: {1,1,4,4} %e A332287 200: {1,1,1,3,3} %e A332287 216: {1,1,1,2,2,2} %e A332287 225: {2,2,3,3} %e A332287 242: {1,5,5} %e A332287 250: {1,3,3,3} %e A332287 252: {1,1,2,2,4} %e A332287 280: {1,1,1,3,4} %e A332287 For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence. %t A332287 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A332287 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332287 Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&] %Y A332287 The enumeration of these partitions by sum is A332284. %Y A332287 Not assuming the last part is zero gives A332725. %Y A332287 Non-unimodal permutations are A059204. %Y A332287 Non-unimodal compositions are A115981. %Y A332287 Non-unimodal normal sequences are A328509. %Y A332287 Partitions with non-unimodal run-lengths are A332281. %Y A332287 Cf. A001523, A007052, A332280, A332282, A332283, A332285, A332286, A332288, A332294, A332579, A332639, A332642. %K A332287 nonn %O A332287 1,1 %A A332287 _Gus Wiseman_, Feb 21 2020