cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332288 Number of unimodal permutations of the multiset of prime indices of n.

This page as a plain text file.
%I A332288 #6 Feb 16 2025 08:33:59
%S A332288 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,2,1,3,2,2,1,4,1,2,1,3,1,4,1,1,2,2,
%T A332288 2,3,1,2,2,4,1,4,1,3,3,2,1,5,1,2,2,3,1,2,2,4,2,2,1,6,1,2,3,1,2,4,1,3,
%U A332288 2,4,1,4,1,2,2,3,2,4,1,5,1,2,1,6,2,2,2
%N A332288 Number of unimodal permutations of the multiset of prime indices of n.
%C A332288 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A332288 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
%C A332288 Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2).
%H A332288 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a>
%H A332288 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>
%e A332288 The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180:
%e A332288   (1)  (12)  (112)  (1112)  (11112)  (1123)  (11123)  (11223)
%e A332288        (21)  (121)  (1121)  (11121)  (1132)  (11132)  (11232)
%e A332288              (211)  (1211)  (11211)  (1231)  (11231)  (11322)
%e A332288                     (2111)  (12111)  (1321)  (11321)  (12231)
%e A332288                             (21111)  (2311)  (12311)  (12321)
%e A332288                                      (3211)  (13211)  (13221)
%e A332288                                              (23111)  (22311)
%e A332288                                              (32111)  (23211)
%e A332288                                                       (32211)
%t A332288 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A332288 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
%t A332288 Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}]
%Y A332288 Dominated by A008480.
%Y A332288 A more interesting version is A332294.
%Y A332288 The complement is counted by A332671.
%Y A332288 Unimodal compositions are A001523.
%Y A332288 Unimodal normal sequences appear to be A007052.
%Y A332288 Unimodal permutations are A011782.
%Y A332288 Non-unimodal permutations are A059204.
%Y A332288 Numbers with non-unimodal unsorted prime signature are A332282.
%Y A332288 Partitions with unimodal 0-appended first differences are A332283.
%Y A332288 Cf. A056239, A112798, A115981, A124010, A227038, A304660, A328509, A332280, A332284, A332294, A332578, A332672.
%K A332288 nonn
%O A332288 1,6
%A A332288 _Gus Wiseman_, Feb 22 2020