This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332288 #6 Feb 16 2025 08:33:59 %S A332288 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,2,1,3,2,2,1,4,1,2,1,3,1,4,1,1,2,2, %T A332288 2,3,1,2,2,4,1,4,1,3,3,2,1,5,1,2,2,3,1,2,2,4,2,2,1,6,1,2,3,1,2,4,1,3, %U A332288 2,4,1,4,1,2,2,3,2,4,1,5,1,2,1,6,2,2,2 %N A332288 Number of unimodal permutations of the multiset of prime indices of n. %C A332288 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A332288 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332288 Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2). %H A332288 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %H A332288 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332288 The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180: %e A332288 (1) (12) (112) (1112) (11112) (1123) (11123) (11223) %e A332288 (21) (121) (1121) (11121) (1132) (11132) (11232) %e A332288 (211) (1211) (11211) (1231) (11231) (11322) %e A332288 (2111) (12111) (1321) (11321) (12231) %e A332288 (21111) (2311) (12311) (12321) %e A332288 (3211) (13211) (13221) %e A332288 (23111) (22311) %e A332288 (32111) (23211) %e A332288 (32211) %t A332288 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A332288 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332288 Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}] %Y A332288 Dominated by A008480. %Y A332288 A more interesting version is A332294. %Y A332288 The complement is counted by A332671. %Y A332288 Unimodal compositions are A001523. %Y A332288 Unimodal normal sequences appear to be A007052. %Y A332288 Unimodal permutations are A011782. %Y A332288 Non-unimodal permutations are A059204. %Y A332288 Numbers with non-unimodal unsorted prime signature are A332282. %Y A332288 Partitions with unimodal 0-appended first differences are A332283. %Y A332288 Cf. A056239, A112798, A115981, A124010, A227038, A304660, A328509, A332280, A332284, A332294, A332578, A332672. %K A332288 nonn %O A332288 1,6 %A A332288 _Gus Wiseman_, Feb 22 2020