A332290 Heinz numbers of widely alternately co-strongly normal integer partitions.
1, 2, 4, 6, 8, 12, 16, 30, 32, 60, 64, 128, 210, 256, 360, 512, 1024, 2048, 2310, 2520, 4096, 8192, 16384, 30030, 32768, 65536, 75600, 131072, 262144, 510510, 524288
Offset: 1
Examples
The sequence of all widely alternately co-strongly normal integer partitions together with their Heinz numbers begins: 1: () 2: (1) 4: (1,1) 6: (2,1) 8: (1,1,1) 12: (2,1,1) 16: (1,1,1,1) 30: (3,2,1) 32: (1,1,1,1,1) 60: (3,2,1,1) 64: (1,1,1,1,1,1) 128: (1,1,1,1,1,1,1) 210: (4,3,2,1) 256: (1,1,1,1,1,1,1,1) 360: (3,2,2,1,1,1) 512: (1,1,1,1,1,1,1,1,1) 1024: (1,1,1,1,1,1,1,1,1,1) 2048: (1,1,1,1,1,1,1,1,1,1,1) 2310: (5,4,3,2,1) 2520: (4,3,2,2,1,1,1) For example, starting with y = (4,3,2,2,1,1,1), which has Heinz number 2520, and repeatedly taking run-lengths and reversing gives (4,3,2,2,1,1,1) -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1). These are all normal with weakly increasing run-lengths and the last is all 1's, so 2520 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]]; Select[Range[10000],totnQ[Reverse[primeMS[#]]]&]
Comments