This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332291 #6 Feb 16 2020 07:54:52 %S A332291 1,2,4,6,8,16,18,30,32,64,128,210,256,450,512,1024,2048,2250,2310, %T A332291 4096,8192,16384,30030,32768,65536,131072,262144,510510,524288 %N A332291 Heinz numbers of widely totally strongly normal integer partitions. %C A332291 An integer partition is widely totally strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which are themselves a widely totally strongly normal partition. %C A332291 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A332291 This sequence is closed under A304660, so there are infinitely many terms that are not powers of 2 or primorial numbers. %e A332291 The sequence of all widely totally strongly normal integer partitions together with their Heinz numbers begins: %e A332291 1: () %e A332291 2: (1) %e A332291 4: (1,1) %e A332291 6: (2,1) %e A332291 8: (1,1,1) %e A332291 16: (1,1,1,1) %e A332291 18: (2,2,1) %e A332291 30: (3,2,1) %e A332291 32: (1,1,1,1,1) %e A332291 64: (1,1,1,1,1,1) %e A332291 128: (1,1,1,1,1,1,1) %e A332291 210: (4,3,2,1) %e A332291 256: (1,1,1,1,1,1,1,1) %e A332291 450: (3,3,2,2,1) %e A332291 512: (1,1,1,1,1,1,1,1,1) %e A332291 1024: (1,1,1,1,1,1,1,1,1,1) %e A332291 2048: (1,1,1,1,1,1,1,1,1,1,1) %e A332291 2250: (3,3,3,2,2,1) %e A332291 2310: (5,4,3,2,1) %e A332291 4096: (1,1,1,1,1,1,1,1,1,1,1,1) %t A332291 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A332291 totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]]; %t A332291 Select[Range[10000],totnQ[Reverse[primeMS[#]]]&] %Y A332291 Closed under A304660. %Y A332291 The non-strong version is A332276. %Y A332291 The co-strong version is A332293. %Y A332291 The case of reversed partitions is (also) A332293. %Y A332291 Heinz numbers of normal partitions with decreasing run-lengths are A025487. %Y A332291 Cf. A055932, A056239, A181819, A242031, A317089, A317246, A317257, A317492, A329747, A332277, A332278, A332290, A332292, A332297, A332337. %K A332291 nonn,more %O A332291 1,2 %A A332291 _Gus Wiseman_, Feb 14 2020