This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332293 #5 Feb 18 2020 04:47:44 %S A332293 1,2,4,6,8,12,16,30,32,64,128,180,210,256,360,512,1024,2048,2310,4096, %T A332293 8192,16384,30030,32768,65536,75600,131072,262144,510510,524288 %N A332293 Heinz numbers of widely totally co-strongly normal integer partitions. %C A332293 An integer partition is widely totally co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which are themselves a widely totally co-strongly normal partition. %C A332293 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A332293 The sequence of terms together with their prime indices begins: %e A332293 1: {} %e A332293 2: {1} %e A332293 4: {1,1} %e A332293 6: {1,2} %e A332293 8: {1,1,1} %e A332293 12: {1,1,2} %e A332293 16: {1,1,1,1} %e A332293 30: {1,2,3} %e A332293 32: {1,1,1,1,1} %e A332293 64: {1,1,1,1,1,1} %e A332293 128: {1,1,1,1,1,1,1} %e A332293 180: {1,1,2,2,3} %e A332293 210: {1,2,3,4} %e A332293 256: {1,1,1,1,1,1,1,1} %e A332293 360: {1,1,1,2,2,3} %e A332293 512: {1,1,1,1,1,1,1,1,1} %e A332293 1024: {1,1,1,1,1,1,1,1,1,1} %e A332293 2048: {1,1,1,1,1,1,1,1,1,1,1} %e A332293 2310: {1,2,3,4,5} %e A332293 4096: {1,1,1,1,1,1,1,1,1,1,1,1} %e A332293 8192: {1,1,1,1,1,1,1,1,1,1,1,1,1} %e A332293 For example, 180 is the Heinz number of (3,2,2,1,1), with run-lengths (3,2,2,1,1) -> (1,2,2) -> (1,2) -> (1,1). These are all normal with weakly increasing multiplicities and the last is all 1's, so 180 belongs to the sequence. %t A332293 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A332293 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A332293 gnaQ[y_]:=Or[y=={},Union[y]=={1},And[normQ[y],LessEqual@@Length/@Split[y],gnaQ[Length/@Split[y]]]]; %t A332293 Select[Range[1000],gnaQ[Reverse[primeMS[#]]]&] %Y A332293 A subset of A055932. %Y A332293 Closed under A181819. %Y A332293 The non-co-strong version is A332276. %Y A332293 The enumeration of these partitions by sum is A332278. %Y A332293 The alternating version is A332290. %Y A332293 The strong version is A332291. %Y A332293 The case of reversed partitions is (also) A332291. %Y A332293 Cf. A000009, A056239, A133808, A182850, A304660, A317089, A317246, A317257, A317492, A329747, A332277, A332289. %K A332293 nonn,more %O A332293 1,2 %A A332293 _Gus Wiseman_, Feb 16 2020