A332302 Squared length of sum of e_lambda e_lambda', where e_lambda is an elementary symmetric function and lambda ranges over all partitions of n and lambda' is the adjoint (or transpose) of lambda.
1, 4, 5, 9, 13, 21, 29, 50, 66, 98, 134, 191, 255, 355, 468, 633, 829, 1117, 1438, 1895, 2432, 3156, 4021, 5163, 6520, 8292, 10406, 13108, 16345, 20438, 25320, 31491, 38797, 47890, 58737, 72105, 87991, 107473, 130577, 158686, 192021, 232328, 279993, 337391, 405112, 486212, 581806, 695763
Offset: 1
Keywords
Examples
For n = 4, we get a(4) = 9 since e(4)e(1,1,1,1) = e(4,1,1,1,1); e(3,1)e(2,1,1) = e(3,2,1,1); e(2,2)e(2,2) = e(2,2,2,2); e(2,1,1)e(3,1) = e(3,2,1,1); e(1,1,1,1)e(4) = e(4,1,1,1,1); summing to 2 e(4,1,1,1,1) + 2 e(3,2,1,1) + e(2,2,2,2) with coefficient vector (2,2,1) and length squared 2^2 + 2^2 + 1^2 = 9.
Programs
-
Mathematica
Table[aa = Reverse[Sort[Join[#, TransposePartition[#]]]]&/@ Partitions[n]; (#.#)&@ Map[Last, Tally[aa]], {n, 48}]
Comments