cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332308 a(n) = round(c^n), where c is the prime generating constant c = 31622.77671855956934118197870614288... .

This page as a plain text file.
%I A332308 #37 Jun 30 2020 14:23:22
%S A332308 1000000007,31622776952311,1000000014783746303,
%T A332308 31622777186062677745609,1000000022175619536498921059,
%U A332308 31622777419814234539614807614633,1000000029567492824611472390607319403,31622777653565793061482767695810547093627,1000000036959366167363813218134876470482703123
%N A332308 a(n) = round(c^n), where c is the prime generating constant c = 31622.77671855956934118197870614288... .
%C A332308 The exact value of c = 31622.776718559569341 ... has 4096 decimal digits (cf. A335320).
%H A332308 Hugo Pfoertner, <a href="/A332308/b332308.txt">Table of n, a(n) for n = 2..222</a>
%H A332308 Simon Plouffe, <a href="https://arxiv.org/abs/2002.12137">The calculation of p(n) and pi(n)</a>, arXiv:2002.12137 [math.NT], 2020. See Appendix.
%H A332308 Simon Plouffe, <a href="http://plouffe.fr/NEW/a%20formula%20for%20primes.pdf">A formula for primes</a>
%F A332308 a(n) = round(c^n), gives primes for n = 2..388.
%e A332308 round(c^2) = 1000000007, round(c^3) = 31622776952311.
%Y A332308 Cf. A333127, A335320.
%K A332308 nonn,fini
%O A332308 2,1
%A A332308 _Simon Plouffe_, Mar 07 2020
%E A332308 Edited by _Georg Fischer_, Jun 27 2020