A332477 Numbers k that are unitary harmonic in Gaussian integers: k * A332476(k) is divisible by A332472(k) + i*A332473(k) (where i is the imaginary unit).
1, 5, 12, 50, 60, 84, 300, 420, 450, 756, 900, 1950, 3780, 7800, 9900, 33150, 49140, 54600, 100800, 132600, 265200, 491400, 928200, 1856400, 8353800, 8884200, 16707600, 52211250, 65995776, 78566400, 182739375, 183783600, 208845000, 280348992, 293046000, 329978880
Offset: 1
Keywords
Examples
5 is a term since 5 * A332476(5)/(A332472(5) + i*A332473(5)) = 5 * 4/(4 + 8*i) = 1 - 2*i is a Gaussian integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..75
Programs
-
Mathematica
sigma[p_, e_] := If[Abs[p] == 1, 1, (p^e + 1)]; tau[p_, e_] := If[Abs[p] == 1, 1, 2]; unitaryHarmonicQ[n_] := Divisible[n * Times @@ tau @@@ (f = FactorInteger[n, GaussianIntegers -> True]), Times @@ sigma @@@ f]; Select[Range[10^5], unitaryHarmonicQ]
Comments