This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332321 #13 Feb 11 2020 03:54:42 %S A332321 1,2,6,10,30,90,130,210,390,1170,2730,5850,6630,19890,46410,99450, %T A332321 139230,192270,576810,1345890,2884050,4037670,7883070,12113010, %U A332321 20188350,23649210,44414370,49797930,55181490,118246050,149393790,165544470,496633410,746968950,827722350 %N A332321 Numbers k that are norm-superabundant in Gaussian integers, i.e., A103230(m)/m^2 < A103230(k)/k^2 for all m < k. %C A332321 Analogous to superabundant numbers (A004394), with the magnitude of the sum of divisors function generalized for Gaussian integers (sqrt(A103230)) instead of the sum of divisors function (A000203). %H A332321 Amiram Eldar, <a href="/A332321/b332321.txt">Table of n, a(n) for n = 1..40</a> %H A332321 Robert Spira, <a href="https://doi.org/10.1080/00029890.1961.11989634">The Complex Sum of Divisors</a>, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124. %e A332321 The first 6 terms of A103230 are 1, 13, 16, 41, 80, 208. The corresponding values of A103230(n)/n^2 are 1, 3.25, 1.777..., 2.5625, 3.2, 5.777... and the record values occur at n = 1, 2, 6, the first 3 terms of this sequence. %t A332321 r[n_] := Abs[DivisorSigma[1, n, GaussianIntegers -> True]]^2/n^2; rm = 0; seq = {}; Do[r1 = r[n]; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 6*10^5}]; seq %Y A332321 Cf. A000203, A004394, A103228, A103229, A103230, A279254, A332320. %K A332321 nonn %O A332321 1,2 %A A332321 _Amiram Eldar_, Feb 09 2020