A332570 Numbers that are norm-abundant in Gaussian integers.
2, 4, 5, 6, 9, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96
Offset: 1
Keywords
Examples
2 is norm-abundant since sigma(2) = 2 + 3*i and N(2 + 3*i) = 2^2 + 3^2 = 13 > 2 * 2^2 = 8.
References
- Miriam Hausman, On Norm Abundant Gaussian Integers, The Journal of the Indian Mathematical Society, Vol. 49 (1987), pp. 119-123.
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 120.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Robert Spira, The Complex Sum of Divisors, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124.
Programs
-
Mathematica
normAbQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; Select[Range[100], normAbQ]
Comments