cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332329 Decimal expansion of the next-to-least positive zero of the 4th Maclaurin polynomial of cos x.

This page as a plain text file.
%I A332329 #8 Feb 12 2020 19:47:36
%S A332329 3,0,7,6,3,7,8,0,0,2,6,4,1,7,0,3,0,9,6,9,6,6,0,2,5,8,6,3,9,3,6,7,2,2,
%T A332329 4,1,9,3,1,8,5,9,0,8,5,7,7,2,5,0,5,9,6,2,5,4,4,0,6,3,4,2,1,3,1,6,7,5,
%U A332329 6,6,3,1,6,9,2,1,2,3,5,9,3,1,7,5,7,2
%N A332329 Decimal expansion of the next-to-least positive zero of the 4th Maclaurin polynomial of cos x.
%C A332329 The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
%C A332329 Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero.  The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.
%e A332329 Next-to-least positive zero = 3.0763780026417030969660258639367224
%t A332329 z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
%t A332329 t = x /. NSolve[p[4, x] == 0, x, z][[4]]
%t A332329 u = RealDigits[t][[1]]
%t A332329 Plot[Evaluate[p[4, x]], {x, -1, 4}]
%Y A332329 Cf. A197723, A323326, A323330, A323331.
%K A332329 nonn,cons,easy
%O A332329 1,1
%A A332329 _Clark Kimberling_, Feb 11 2020