A332334 Let a(1) = a(2) = 1, and for n > 2 let a(n) = p where p is the largest prime such that p# divides phi(n), where phi is Euler's totient function and # is the primorial.
1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 5, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 5, 5, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 5, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1
Keywords
Links
- Paul Pollack and Carl Pomerance, Phi, primorials, and Poisson, arXiv:2001.06727 [math.NT], 2020.
Programs
-
PARI
a(n)=my(ph=eulerphi(n)); my(p=1); forprime(q=2,, if(ph%q, return(p), p=q))
Comments