cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332353 Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 2, 4, 14, 24, 3, 6, 22, 38, 60, 4, 8, 30, 52, 82, 112, 5, 10, 40, 70, 112, 154, 212, 6, 12, 50, 88, 142, 196, 270, 344, 7, 14, 62, 110, 178, 246, 340, 434, 548, 8, 16, 74, 132, 214, 296, 410, 524, 662, 800, 9, 18, 88, 158, 258, 358, 498, 638, 808, 978, 1196
Offset: 1

Views

Author

N. J. A. Sloane, Feb 10 2020

Keywords

Comments

This is the triangle in A332352, halved.

Examples

			Triangle begins:
0,
0, 0,
1, 2, 8,
2, 4, 14, 24,
3, 6, 22, 38, 60,
4, 8, 30, 52, 82, 112,
5, 10, 40, 70, 112, 154, 212,
6, 12, 50, 88, 142, 196, 270, 344,
7, 14, 62, 110, 178, 246, 340, 434, 548,
8, 16, 74, 132, 214, 296, 410, 524, 662, 800,
...
		

Crossrefs

The main diagonal is A177719.

Programs

  • Maple
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    for m from 1 to 12 do lprint(seq(VR(m,n,2)/2,n=1..m),); od:
  • Mathematica
    A332353[m_,n_]:=Sum[If[GCD[i,j]==2,2(m-i)(n-j),0],{i,2,m-1,2},{j,2,n-1,2}]+If[n>2,m*n-2m,0]+If[m>2,m*n-2n,0];Table[A332353[m, n],{m,15},{n, m}] (* Paolo Xausa, Oct 18 2023 *)