This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332363 #22 Feb 13 2020 00:58:36 %S A332363 1,2,7,3,11,19,4,18,31,51,5,24,42,69,95,6,33,59,98,135,191,7,41,74, %T A332363 124,172,243,311,8,52,94,158,219,310,397,507,9,62,114,191,265,376,482, %U A332363 615,747,10,75,138,233,325,462,593,758,921,1135 %N A332363 Triangle read by rows: T(m,n) = number of unstable threshold functions (the function u_{0,1}(m,n) of Alekseyev et al. 2015) for m >= n >= 2. %H A332363 M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. <a href="https://doi.org/10.1137/140978090">On the minimal teaching sets of two-dimensional threshold functions</a>. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 11. %e A332363 Triangle begins: %e A332363 1, %e A332363 2, 7, %e A332363 3, 11, 19, %e A332363 4, 18, 31, 51, %e A332363 5, 24, 42, 69, 95, %e A332363 6, 33, 59, 98, 135, 191, %e A332363 7, 41, 74, 124, 172, 243, 311, %e A332363 8, 52, 94, 158, 219, 310, 397, 507, %e A332363 9, 62, 114, 191, 265, 376, 482, 615, 747, %e A332363 10, 75, 138, 233, 325, 462, 593, 758, 921, 1135, %e A332363 ... %p A332363 VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0; %p A332363 for i from ceil(-m+eps) to floor(m-eps) do %p A332363 for j from ceil(-n+eps) to floor(n-eps) do %p A332363 if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end; %p A332363 VS := proc(m,n) local a,i,j; a:=0; %p A332363 for i from 1 to m-1 do for j from 1 to n-1 do %p A332363 if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781 %p A332363 u01:=(m,n) -> 2*VQ(m/2,n/2,1)+2-VS(m,n); # This sequence %p A332363 for m from 2 to 12 do lprint([seq(u01(m,n),n=2..m)]); od: %Y A332363 Cf. A332350, A332352, A331781. %Y A332363 Main diagonal is A332364. %K A332363 nonn,tabl %O A332363 2,2 %A A332363 _N. J. A. Sloane_, Feb 11 2020