cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332365 Triangle read by rows: T(m,n) = number of threshold functions (the function u_{0,2}(m,n) of Alekseyev et al. 2015) for m >= n >= 2.

Original entry on oeis.org

3, 6, 13, 9, 21, 33, 12, 30, 49, 73, 15, 40, 66, 99, 133, 18, 51, 85, 130, 177, 237, 21, 63, 106, 164, 224, 301, 381, 24, 76, 130, 202, 277, 374, 475, 593, 27, 90, 154, 241, 331, 448, 570, 713, 857, 30, 105, 182, 287, 395, 538, 687, 862, 1039, 1261, 33, 121, 211, 335, 462, 632, 808, 1016, 1226, 1489, 1757
Offset: 2

Views

Author

N. J. A. Sloane, Feb 11 2020

Keywords

Examples

			Triangle begins:
3,
6, 13,
9, 21, 33,
12, 30, 49, 73,
15, 40, 66, 99, 133,
18, 51, 85, 130, 177, 237,
21, 63, 106, 164, 224, 301, 381,
24, 76, 130, 202, 277, 374, 475, 593,
27, 90, 154, 241, 331, 448, 570, 713, 857,
...
		

Crossrefs

Main diagonal is A332366.

Programs

  • Maple
    VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0;
    for i from ceil(-m+eps) to floor(m-eps) do
    for j from ceil(-n+eps) to floor(n-eps) do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    VS := proc(m,n) local a,i,j; a:=0;
    for i from 1 to m-1 do for j from 1 to n-1 do
    if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781
    u02:=(m,n) -> VQ(m,n,2)+2-2*VQ(m/2,n/2,1)+VS(m,n); # This sequence
    for m from 2 to 12 do lprint([seq(u02(m,n),n=2..m)]); od:
Showing 1-1 of 1 results.