cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332367 Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of triangular cells in the partition for m >= n >= 2.

Original entry on oeis.org

4, 8, 20, 12, 32, 52, 16, 48, 80, 124, 20, 64, 108, 168, 228, 24, 84, 144, 228, 312, 428, 28, 104, 180, 288, 396, 544, 692, 32, 128, 224, 360, 496, 684, 872, 1100, 36, 152, 268, 432, 596, 824, 1052, 1328, 1604, 40, 180, 320, 520, 720, 1000, 1280, 1620, 1960, 2396
Offset: 2

Views

Author

N. J. A. Sloane, Feb 12 2020

Keywords

Examples

			Triangle begins:
4,
8, 20,
12, 32, 52,
16, 48, 80, 124,
20, 64, 108, 168, 228,
24, 84, 144, 228, 312, 428,
28, 104, 180, 288, 396, 544, 692,
32, 128, 224, 360, 496, 684, 872, 1100,
36, 152, 268, 432, 596, 824, 1052, 1328, 1604,
...
		

Crossrefs

For main diagonal see A332368.

Programs

  • Maple
    # Maple code for sequences mentioned in Theorem 12 of Alekseyev et al. (2015).
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    VS := proc(m,n) local a,i,j; a:=0; # A331781
    for i from 1 to m-1 do for j from 1 to n-1 do
    if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
    c3 := (m,n) -> VR(m,n,2)+4; # A332367
    for m from 2 to 12 do lprint([seq(c3(m,n),n=2..m)]); od:
    [seq(c3(n,n)/4,n=2..40)]; # A332368
    c4 := (m,n) -> VR(m,n,1)/2 - VR(m,n,2) - 3; # A332369
    for m from 2 to 12 do lprint([seq(c4(m,n),n=2..m)]); od:
    [seq(c4(n,n),n=2..40)]; # A332370
    ct := (m,n) -> c3(m,n)+c4(m,n); # A332371
    for m from 2 to 12 do lprint([seq(ct(m,n),n=2..m)]); od:
    [seq(ct(n,n),n=2..40)]; # A114043
    et := (m,n) -> VR(m,n,1) - VR(m,n,2)/2 - VS(m,n) - 2; # A332372
    for m from 2 to 12 do lprint([seq(et(m,n),n=2..m)]); od:
    [seq(et(n,n),n=2..40)]; # A332373
    vt := (m,n) ->  et(m,n) - ct(m,n) +1; # A332374
    for m from 2 to 12 do lprint([seq(vt(m,n),n=2..m)]); od:
    [seq(vt(n,n),n=2..40)]; # A332375