Original entry on oeis.org
3, 9, 35, 77, 191, 321, 591, 941, 1503, 2097, 3047, 4173, 5835, 7577, 9815, 12341, 15763, 19361, 24083, 29317, 35615, 42041, 50095, 58853, 69395, 80129, 92675, 106133, 122239, 138969, 158751, 179845, 203651, 227777, 255023, 283805, 316931, 350441, 387599
Offset: 2
A332367
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of triangular cells in the partition for m >= n >= 2.
Original entry on oeis.org
4, 8, 20, 12, 32, 52, 16, 48, 80, 124, 20, 64, 108, 168, 228, 24, 84, 144, 228, 312, 428, 28, 104, 180, 288, 396, 544, 692, 32, 128, 224, 360, 496, 684, 872, 1100, 36, 152, 268, 432, 596, 824, 1052, 1328, 1604, 40, 180, 320, 520, 720, 1000, 1280, 1620, 1960, 2396
Offset: 2
Triangle begins:
4,
8, 20,
12, 32, 52,
16, 48, 80, 124,
20, 64, 108, 168, 228,
24, 84, 144, 228, 312, 428,
28, 104, 180, 288, 396, 544, 692,
32, 128, 224, 360, 496, 684, 872, 1100,
36, 152, 268, 432, 596, 824, 1052, 1328, 1604,
...
-
# Maple code for sequences mentioned in Theorem 12 of Alekseyev et al. (2015).
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0; # A331781
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
c3 := (m,n) -> VR(m,n,2)+4; # A332367
for m from 2 to 12 do lprint([seq(c3(m,n),n=2..m)]); od:
[seq(c3(n,n)/4,n=2..40)]; # A332368
c4 := (m,n) -> VR(m,n,1)/2 - VR(m,n,2) - 3; # A332369
for m from 2 to 12 do lprint([seq(c4(m,n),n=2..m)]); od:
[seq(c4(n,n),n=2..40)]; # A332370
ct := (m,n) -> c3(m,n)+c4(m,n); # A332371
for m from 2 to 12 do lprint([seq(ct(m,n),n=2..m)]); od:
[seq(ct(n,n),n=2..40)]; # A114043
et := (m,n) -> VR(m,n,1) - VR(m,n,2)/2 - VS(m,n) - 2; # A332372
for m from 2 to 12 do lprint([seq(et(m,n),n=2..m)]); od:
[seq(et(n,n),n=2..40)]; # A332373
vt := (m,n) -> et(m,n) - ct(m,n) +1; # A332374
for m from 2 to 12 do lprint([seq(vt(m,n),n=2..m)]); od:
[seq(vt(n,n),n=2..40)]; # A332375
A332371
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = total number of cells in the partition for m >= n >= 2.
Original entry on oeis.org
7, 14, 29, 23, 50, 87, 34, 75, 132, 201, 47, 106, 189, 290, 419, 62, 141, 252, 387, 560, 749, 79, 182, 327, 504, 731, 980, 1283, 98, 227, 410, 633, 920, 1235, 1618, 2041, 119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107, 142, 333, 604, 935, 1362, 1829, 2398, 3027, 3736, 4493
Offset: 2
Triangle begins:
7,
14, 29,
23, 50, 87,
34, 75, 132, 201,
47, 106, 189, 290, 419,
62, 141, 252, 387, 560, 749,
79, 182, 327, 504, 731, 980, 1283,
98, 227, 410, 633, 920, 1235, 1618, 2041,
119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107,
...
Showing 1-3 of 3 results.
Comments