A332380 a(n) is the X-coordinate of the n-th point of the Peano curve. Sequence A332381 gives Y-coordinates.
0, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 5, 5, 6, 6, 5, 5, 4, 4, 5, 5, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 9, 9, 8, 8, 9, 9
Offset: 0
References
- Benoit B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., 1983, section 7, "Harnessing the Peano Monster Curves", page 62 description and plate 63 bottom right drawn with chamfered corners.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
- Joerg Arndt, Plane-filling curves on all uniform grids, arXiv:1607.02433 [math.CO], 2016, 2018. Curve R9-1 drawn in figure 4.1-O (top row forms, vertical mirror image).
- Donald E. Knuth, Selected Papers on Fun and Games, CSLI Lecture Notes Number 192, CSLI Publications, 2010, ISBN 978-1-57586-585-0, page 611 folding product DUUUDDDU drawn at 45 degrees in a labyrinth.
- Walter Wunderlich, Über Peano-Kurven, Elemente der Mathematik, volume 28, number 1, 1973, pages 1-10. See section 4 serpentine type 010 101 010 as illustrated in figure 3, the coordinates here being diagonal steps across the unit squares there.
- Index entries for sequences related to coordinates of 2D curves
Programs
-
PARI
{ [R,U,L,D]=[0..3]; p = [R,U,R,D,L,D,R,U,R]; z=0; for (n=0, 86, print1 (real(z) ", "); z += I^vecsum(apply(d -> p[1+d], digits(n, #p)))) }
Formula
a(9^k) = 3^k for any k >= 0.
Comments