cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332385 Sum of squares of indices of distinct prime factors of n.

This page as a plain text file.
%I A332385 #9 Jun 28 2022 16:38:41
%S A332385 0,1,4,1,9,5,16,1,4,10,25,5,36,17,13,1,49,5,64,10,20,26,81,5,9,37,4,
%T A332385 17,100,14,121,1,29,50,25,5,144,65,40,10,169,21,196,26,13,82,225,5,16,
%U A332385 10,53,37,256,5,34,17,68,101,289,14,324,122,20,1,45,30,361,50,85,26,400,5,441,145,13
%N A332385 Sum of squares of indices of distinct prime factors of n.
%H A332385 Alois P. Heinz, <a href="/A332385/b332385.txt">Table of n, a(n) for n = 1..10000</a>
%H A332385 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A332385 G.f.: Sum_{k>=1} k^2 * x^prime(k) / (1 - x^prime(k)).
%F A332385 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^2), where pi = A000720.
%e A332385 a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 2^2 + 4^2 = 20.
%p A332385 a:= n-> add(numtheory[pi](i[1])^2, i=ifactors(n)[2]):
%p A332385 seq(a(n), n=1..80);  # _Alois P. Heinz_, Feb 10 2020
%t A332385 nmax = 75; CoefficientList[Series[Sum[k^2 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t A332385 a[n_] := Plus @@ (PrimePi[#[[1]]]^2 & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]
%Y A332385 Cf. A000720, A005063, A056239, A066328, A067666, A090885, A289506.
%K A332385 nonn
%O A332385 1,3
%A A332385 _Ilya Gutkovskiy_, Feb 10 2020