This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332398 #14 May 07 2020 07:11:21 %S A332398 1,1,2,4,8,17,40,105,304,958,3255,11851,46096,191648,854551,4101826, %T A332398 21213282,117747119,695773801,4332490151,28149712546,189300600481, %U A332398 1309755334070,9286984108299,67327505784439,498502290046850,3769028024302567,29115361551715499 %N A332398 Number of set partitions of [n] where all prime-indexed blocks are singletons. %H A332398 Alois P. Heinz, <a href="/A332398/b332398.txt">Table of n, a(n) for n = 0..605</a> %H A332398 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A332398 a(2) = 2: 12, 1|2. %e A332398 a(3) = 4: 123, 12|3, 13|2, 1|2|3. %e A332398 a(4) = 8: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 14|2|3, 1|2|3|4. %e A332398 a(5) = 17: 12345, 1234|5, 1235|4, 123|4|5, 1245|3, 124|3|5, 125|3|4, 12|3|4|5, 1345|2, 134|2|5, 135|2|4, 13|2|4|5, 145|2|3, 14|2|3|5, 15|2|3|4, 1|2|3|45, 1|2|3|4|5. %p A332398 b:= proc(n, m) option remember; `if`(n=0, 1, add(`if`(j<=m %p A332398 and isprime(j), 0, b(n-1, max(j, m))), j=1..m+1)) %p A332398 end: %p A332398 a:= n-> b(n, 0): %p A332398 seq(a(n), n=0..32); %p A332398 # second Maple program: %p A332398 b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, i+1)* %p A332398 binomial(n-1, j-1), j=1..`if`(isprime(i+1), 1, n))) %p A332398 end: %p A332398 a:= n-> b(n, 0): %p A332398 seq(a(n), n=0..32); %t A332398 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1] Binomial[n-1, j-1], {j, 1, If[PrimeQ[i+1], 1, n]}]]; %t A332398 a[n_] := b[n, 0]; %t A332398 a /@ Range[0, 32] (* _Jean-François Alcover_, May 07 2020, after 2nd Maple program *) %Y A332398 Cf. A000040, A000110, A007476, A332248. %K A332398 nonn %O A332398 0,3 %A A332398 _Alois P. Heinz_, Feb 10 2020