This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332400 #12 Feb 16 2025 08:33:59 %S A332400 1,2,0,6,0,1,19,2,2,0,96,14,11,0,1,670,163,51,2,2,0,8191,2583,495,21, %T A332400 11,0,1,183149,70667,8127,314,61,2,2,0,7888271,3566498,268125,6929, %U A332400 644,21,11,0,1 %N A332400 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with total domination number k, n >= 2, 2 <= k <= n. %C A332400 Only graphs without isolated nodes can have a total dominating set. %C A332400 The total domination number of a graph is greater than or equal to the domination number. %H A332400 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotalDominationNumber.html">Total Domination Number</a> %H A332400 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dominating_set">Dominating set</a> %F A332400 T(2*n, 2*n) = 1; T(2*n+1, 2*n) = 2; T(2*n+1, 2*n+1) = T(2*n+2, 2*n+1) = 0. %e A332400 Triangle begins, n >= 2, k >= 2: %e A332400 1; %e A332400 2, 0; %e A332400 6, 0, 1; %e A332400 19, 2, 2, 0; %e A332400 96, 14, 11, 0, 1; %e A332400 670, 163, 51, 2, 2, 0; %e A332400 8191, 2583, 495, 21, 11, 0, 1; %e A332400 183149, 70667, 8127, 314, 61, 2, 2, 0; %e A332400 7888271, 3566498, 268125, 6929, 644, 21, 11, 0, 1; %e A332400 ... %Y A332400 Column k=2 is A332406. %Y A332400 Row sums are A002494. %Y A332400 Cf. A263284, A286958. %K A332400 nonn,tabl,more %O A332400 2,2 %A A332400 _Andrew Howroyd_, Feb 11 2020