This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332403 #9 Feb 16 2025 08:33:59 %S A332403 1,1,1,1,2,1,1,6,3,1,1,13,15,4,1,1,36,83,30,5,1,1,101,582,302,51,6,1, %T A332403 1,365,6024,5025,843,80,7,1,1,1518,99497,144370,27160,1996,117,8,1,1, %U A332403 8002,2706069,7441209,1733211,112291,4211,164,9,1 %N A332403 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with upper domination number k. %C A332403 First differs from A263341 in row 6. %C A332403 The upper domination number of a graph is the maximum size of a minimal dominating set (a set that is both dominating and irredundant). For any graph it is greater than or equal to the independence number (A263341) and less than or equal to the upper irredundance number (A332405). The number of graphs where it is strictly greater than is given in A332407. %H A332403 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a> %e A332403 Triangle begins: %e A332403 1; %e A332403 1, 1; %e A332403 1, 2, 1; %e A332403 1, 6, 3, 1; %e A332403 1, 13, 15, 4, 1; %e A332403 1, 36, 83, 30, 5, 1; %e A332403 1, 101, 582, 302, 51, 6, 1; %e A332403 1, 365, 6024, 5025, 843, 80, 7, 1; %e A332403 1, 1518, 99497, 144370, 27160, 1996, 117, 8, 1; %e A332403 1, 8002, 2706069, 7441209, 1733211, 112291, 4211, 164, 9, 1; %e A332403 ... %Y A332403 Row sums are A000088. %Y A332403 Cf. A263284, A263341, A332402, A332404, A332405, A332407. %K A332403 nonn,tabl %O A332403 1,5 %A A332403 _Andrew Howroyd_, Feb 11 2020