cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332404 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with irredundance number k.

This page as a plain text file.
%I A332404 #10 Feb 16 2025 08:33:59
%S A332404 1,1,1,2,1,1,4,5,1,1,11,16,5,1,1,34,94,21,5,1,1,156,710,150,21,5,1,1,
%T A332404 1044,9419,1691,164,21,5,1,1,12346,221979,38207,1944,164,21,5,1,1,
%U A332404 274668,9907071,1773452,47802,1983,164,21,5,1,1
%N A332404 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with irredundance number k.
%C A332404 The irredundance number of a graph is the minimum size of a maximal irredundant set.
%C A332404 For any graph the following relation holds:
%C A332404    irredundance number (this sequence)
%C A332404       <= domination number (A263284)
%C A332404       <= independent domination number (A332402)
%C A332404       <= independence number (A263341)
%C A332404       <= upper domination number (A332403)
%C A332404       <= upper irredundance number (A332405).
%H A332404 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIrredundantSet.html">Maximal Irredundant Set</a>
%F A332404 T(n,k) = T(n-1,k-1) for 2*(k-1) >= n.
%e A332404 Triangle begins:
%e A332404        1;
%e A332404        1,       1;
%e A332404        2,       1,       1;
%e A332404        4,       5,       1,     1;
%e A332404       11,      16,       5,     1,    1;
%e A332404       34,      94,      21,     5,    1,   1;
%e A332404      156,     710,     150,    21,    5,   1,  1;
%e A332404     1044,    9419,    1691,   164,   21,   5,  1, 1;
%e A332404    12346,  221979,   38207,  1944,  164,  21,  5, 1, 1;
%e A332404   274668, 9907071, 1773452, 47802, 1983, 164, 21, 5, 1, 1;
%e A332404   ...
%Y A332404 Row sums are A000088.
%Y A332404 Column k=1 is A000088(n-1).
%Y A332404 Cf. A263284, A263341, A332402, A332403, A332404, A332405.
%K A332404 nonn,tabl
%O A332404 1,4
%A A332404 _Andrew Howroyd_, Feb 11 2020