This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332404 #10 Feb 16 2025 08:33:59 %S A332404 1,1,1,2,1,1,4,5,1,1,11,16,5,1,1,34,94,21,5,1,1,156,710,150,21,5,1,1, %T A332404 1044,9419,1691,164,21,5,1,1,12346,221979,38207,1944,164,21,5,1,1, %U A332404 274668,9907071,1773452,47802,1983,164,21,5,1,1 %N A332404 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with irredundance number k. %C A332404 The irredundance number of a graph is the minimum size of a maximal irredundant set. %C A332404 For any graph the following relation holds: %C A332404 irredundance number (this sequence) %C A332404 <= domination number (A263284) %C A332404 <= independent domination number (A332402) %C A332404 <= independence number (A263341) %C A332404 <= upper domination number (A332403) %C A332404 <= upper irredundance number (A332405). %H A332404 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIrredundantSet.html">Maximal Irredundant Set</a> %F A332404 T(n,k) = T(n-1,k-1) for 2*(k-1) >= n. %e A332404 Triangle begins: %e A332404 1; %e A332404 1, 1; %e A332404 2, 1, 1; %e A332404 4, 5, 1, 1; %e A332404 11, 16, 5, 1, 1; %e A332404 34, 94, 21, 5, 1, 1; %e A332404 156, 710, 150, 21, 5, 1, 1; %e A332404 1044, 9419, 1691, 164, 21, 5, 1, 1; %e A332404 12346, 221979, 38207, 1944, 164, 21, 5, 1, 1; %e A332404 274668, 9907071, 1773452, 47802, 1983, 164, 21, 5, 1, 1; %e A332404 ... %Y A332404 Row sums are A000088. %Y A332404 Column k=1 is A000088(n-1). %Y A332404 Cf. A263284, A263341, A332402, A332403, A332404, A332405. %K A332404 nonn,tabl %O A332404 1,4 %A A332404 _Andrew Howroyd_, Feb 11 2020