This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332460 #12 Feb 22 2020 18:02:30 %S A332460 1,2,3,8,5,18,7,12,27,50,11,32,13,98,75,20,17,30,19,72,147,242,23,108, %T A332460 125,338,45,200,29,162,31,28,363,578,245,48,37,722,507,300,41,450,43, %U A332460 392,243,1058,47,500,343,70,867,968,53,42,605,588,1083,1682,59,128,61,1922,675,44,845,882,67,1352,1587,1250,71,180,73,2738,105 %N A332460 a(n) = A005940(1+A065621(A156552(n))), with a(1) = 1. %H A332460 Antti Karttunen, <a href="/A332460/b332460.txt">Table of n, a(n) for n = 1..16384</a> %H A332460 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A332460 a(1) = 1, and for n > 1, a(n) = A005940(1+A065621(A156552(n))). %F A332460 a(p) = p for all primes p. %F A332460 a(A003961(n)) = A003961(a(n)). %F A332460 A008836(a(n)) = -1 for all n >= 2. %o A332460 (PARI) %o A332460 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940 %o A332460 A065621(n) = bitxor(n-1,n+n-1); %o A332460 A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 %o A332460 A332460(n) = A005940(1+A065621(A156552(n))); %Y A332460 Cf. A003961, A005940, A008836, A010052, A065621, A156552, A332449, A332450. %Y A332460 Cf. A332451 for a complementary sequence (after its initial 1). %Y A332460 Permutation of A026424 after the initial 1. %K A332460 nonn %O A332460 1,2 %A A332460 _Antti Karttunen_, Feb 22 2020