cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332472 The real part of the sum of unitary divisors function (usigma) generalized for Gaussian integers.

Original entry on oeis.org

1, 1, 4, -3, 4, 4, 8, 1, 10, -12, 12, -12, 6, 8, 16, 17, 6, 10, 20, -12, 32, 12, 24, 4, -24, -30, 28, -24, 8, -48, 32, 1, 48, -38, 32, -30, 8, 20, 24, 68, 10, 32, 44, -36, 40, 24, 48, 68, 50, -40, 24, -18, 10, 28, 48, 8, 80, -64, 60, -48, 12, 32, 80, -63, -120
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2020

Keywords

Comments

If n = u * Product_{i} p_i^e_i, where u is a unit (1, i, -1 or -i), and p_i is a Gaussian prime with Re(p_i) > 0, then usigma(n) = Product_{i} (p_i^e_i + 1).
a(n) = A103228(n) for odd squarefree numbers (A056911), i.e., numbers n such that A318608(n) != 0.

Examples

			a(4) = -3 since 4 = -(1 + i)^4 in Gaussian integers (i is the imaginary unit), so usigma(4) = (1 + i)^4 + 1 = -3, and a(4) = Re(-3) = -3.
		

Crossrefs

Cf. A034448, A103228, A332473 (the imaginary part), A332474 (the norm).

Programs

  • Mathematica
    f[p_, e_] := If[Abs[p] == 1, 1, (p^e + 1)]; usigma[n_] := Times @@ f @@@ FactorInteger[n, GaussianIntegers -> True]; a[n_] := Re[usigma[n]]; Array[a, 100]