cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332500 Decimal expansion of the maximal normal distance between sine and cosine; see Comments.

Original entry on oeis.org

1, 0, 9, 4, 9, 9, 8, 9, 8, 4, 3, 7, 0, 8, 7, 2, 4, 2, 8, 6, 5, 0, 4, 0, 8, 3, 0, 0, 7, 1, 5, 5, 2, 4, 6, 7, 1, 2, 9, 1, 0, 5, 1, 4, 0, 6, 0, 7, 0, 5, 4, 3, 6, 0, 2, 0, 6, 5, 8, 0, 3, 3, 4, 2, 9, 5, 5, 1, 8, 7, 5, 4, 4, 9, 6, 2, 2, 1, 4, 0, 5, 4, 1, 3, 0, 7
Offset: 1

Views

Author

Clark Kimberling, May 05 2020

Keywords

Comments

Let S and C denote the graphs of y = sin x and y = cos x. For each point (u, sin u) on S, let S(u) be the line normal to S at (u, sin u), and let (snc u, cos(snc u)) be the point of intersection of S(u) and C. Let d(u) be the distance from (u,sin u) to (snc u, cos(snc u)). We call d(u) the u-normal distance from S to C and note that in [0,Pi], there is a unique number u' such that d(u') > d(u) for all real numbers u except those of the form u' + k*Pi. We call d(u') the maximal normal distance between sine and cosine, and we call snc the sine-normal-to-cosine function.
For each (v, cos v) on C, let C(u) be the line normal to C at (v, cos v), and let (cns v, sin(cns v)) be the point of intersection of C(u) and S. Let e(v) be the distance from (v, cos v) to (cns v, sin(cns v)). We call d(v) the v-normal distance from C to S and note that there exists a unique number v' that maximizes e, and e(v') = d(u'). We call cns the cosine-normal-to-sine function. The numbers u' and v' are given in A332501 and A332503.
Note that the maximal normal distance (see Example) exceeds the normal distance from (Pi/2,1) in sine to (Pi/2,0) in cosine - possibly a surprise!

Examples

			2.72573705679992524967463858129656... = the number u in [0,2 Pi] such that the line normal to S at (u, sin u) passes through the point (3 Pi/4,0); cf. A332501.
0.4039727532995172093189617400663... = sin u; cf. A086751.
1.0949989843708724286504083007155... = maximal normal distance between sine and cosine.
1.9866519235847646080193264936226... = snc u; cf A332503.
		

Crossrefs

Programs

  • Mathematica
    Plot[{Sin[x], Cos[x]}, {x, -Pi, 3 Pi}, AspectRatio -> Automatic,
    ImageSize -> 600, PlotLabel -> "sine and cosine"]
    t = Table[x = x /. FindRoot[Cos[x] == -x Sec[u] + u Sec[u] + Sin[u], {x, 0}], {u, -2 Pi, 2 Pi, Pi/101}];
    ListPlot[t, PlotLabel -> "y \[Equal] snc(x)"]
    ListPlot[Cos[t], PlotLabel -> "y \[Equal] cos(snc(x))"]
    t = Table[x = x /. FindRoot[Sin[x] == x Csc[u] - u Csc[u] + Cos[u], {x, 0.1}], {u, -2 Pi + .01, 2 Pi - .01, Pi/101}];
    ListPlot[t, PlotLabel -> "y \[Equal] cns(x)"]
    ListPlot[Sin[t], PlotLabel -> "y \[Equal] sin(cns(x))"]
    u = u /. FindRoot[0 == (-3 Pi/4) Sec[u] + u Sec[u] + Sin[u], {u, 1}, WorkingPrecision ->120]  (* A332501 *)
    y = Sin[u]  (* A086751 *)
    d = 2*Sqrt[(u - 3 Pi/4)^2 + y^2]  (* A332500 *)
    RealDigits[u][[1]]  (* A332501 *)
    RealDigits[y][[1]]  (* A086751 *)
    RealDigits[d][[1]]  (* A332500 *)
  • PARI
    my(d=solve(x=0,1,cos(x)-x)); sqrt(d^2+2-2*sqrt(1-d^2)) \\ Gleb Koloskov, Jun 16 2021

Formula

d(u') = 2*sqrt((u - 3 Pi/4)^2 + (sin u)^2).
Equals sqrt(d^2+2-2*sqrt(1-d^2)) where d = A003957. - Gleb Koloskov, Jun 16 2021