A332500 Decimal expansion of the maximal normal distance between sine and cosine; see Comments.
1, 0, 9, 4, 9, 9, 8, 9, 8, 4, 3, 7, 0, 8, 7, 2, 4, 2, 8, 6, 5, 0, 4, 0, 8, 3, 0, 0, 7, 1, 5, 5, 2, 4, 6, 7, 1, 2, 9, 1, 0, 5, 1, 4, 0, 6, 0, 7, 0, 5, 4, 3, 6, 0, 2, 0, 6, 5, 8, 0, 3, 3, 4, 2, 9, 5, 5, 1, 8, 7, 5, 4, 4, 9, 6, 2, 2, 1, 4, 0, 5, 4, 1, 3, 0, 7
Offset: 1
Examples
2.72573705679992524967463858129656... = the number u in [0,2 Pi] such that the line normal to S at (u, sin u) passes through the point (3 Pi/4,0); cf. A332501. 0.4039727532995172093189617400663... = sin u; cf. A086751. 1.0949989843708724286504083007155... = maximal normal distance between sine and cosine. 1.9866519235847646080193264936226... = snc u; cf A332503.
Programs
-
Mathematica
Plot[{Sin[x], Cos[x]}, {x, -Pi, 3 Pi}, AspectRatio -> Automatic, ImageSize -> 600, PlotLabel -> "sine and cosine"] t = Table[x = x /. FindRoot[Cos[x] == -x Sec[u] + u Sec[u] + Sin[u], {x, 0}], {u, -2 Pi, 2 Pi, Pi/101}]; ListPlot[t, PlotLabel -> "y \[Equal] snc(x)"] ListPlot[Cos[t], PlotLabel -> "y \[Equal] cos(snc(x))"] t = Table[x = x /. FindRoot[Sin[x] == x Csc[u] - u Csc[u] + Cos[u], {x, 0.1}], {u, -2 Pi + .01, 2 Pi - .01, Pi/101}]; ListPlot[t, PlotLabel -> "y \[Equal] cns(x)"] ListPlot[Sin[t], PlotLabel -> "y \[Equal] sin(cns(x))"] u = u /. FindRoot[0 == (-3 Pi/4) Sec[u] + u Sec[u] + Sin[u], {u, 1}, WorkingPrecision ->120] (* A332501 *) y = Sin[u] (* A086751 *) d = 2*Sqrt[(u - 3 Pi/4)^2 + y^2] (* A332500 *) RealDigits[u][[1]] (* A332501 *) RealDigits[y][[1]] (* A086751 *) RealDigits[d][[1]] (* A332500 *)
-
PARI
my(d=solve(x=0,1,cos(x)-x)); sqrt(d^2+2-2*sqrt(1-d^2)) \\ Gleb Koloskov, Jun 16 2021
Formula
d(u') = 2*sqrt((u - 3 Pi/4)^2 + (sin u)^2).
Equals sqrt(d^2+2-2*sqrt(1-d^2)) where d = A003957. - Gleb Koloskov, Jun 16 2021
Comments