cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332502 Rectangular array read by antidiagonals: T(n,k) = floor(n + k*r), where r = golden ratio = (1+sqrt(5))/2.

This page as a plain text file.
%I A332502 #10 Jan 08 2021 22:17:13
%S A332502 0,1,1,3,2,2,4,4,3,3,6,5,5,4,4,8,7,6,6,5,5,9,9,8,7,7,6,6,11,10,10,9,8,
%T A332502 8,7,7,12,12,11,11,10,9,9,8,8,14,13,13,12,12,11,10,10,9,9,16,15,14,14,
%U A332502 13,13,12,11,11,10,10,17,17,16,15,15,14,14,13
%N A332502 Rectangular array read by antidiagonals: T(n,k) = floor(n + k*r), where r = golden ratio = (1+sqrt(5))/2.
%C A332502 Every nonnegative integer occurs exactly once in the union of row 0 and the main diagonal.
%C A332502 Column 0: Nonnegative integers, A001477.
%C A332502 Row 0: Lower Wythoff sequence, A000201.
%C A332502 Row 1: A026351.
%C A332502 Row 2: A026355 (and essentially A099267).
%C A332502 Main Diagonal: Upper Wythoff sequence, A001950.
%C A332502 Diagonal (1,4,6,9,...) = A003622;
%C A332502 Diagonal (3,5,8,11,...) = A026274;
%C A332502 Diagonal (1,3,6,8,...) = A026352;
%C A332502 Diagonal (2,4,7,9,...) = A026356.
%F A332502 T(n,k) = floor(n + k*r), where r = golden ratio = (1+sqrt(5))/2.
%e A332502 Northwest corner:
%e A332502   0   1   3   4   6   8    9    11   12   14   16
%e A332502   1   2   4   5   7   9    10   12   13   15   17
%e A332502   2   3   5   6   8   10   11   13   14   16   18
%e A332502   3   4   6   7   9   11   12   14   15   17   19
%e A332502   4   5   7   8   10  12   13   15   16   18   20
%e A332502   5   6   8   9   11  13   14   16   17   19   21
%e A332502 As a triangle (antidiagonals):
%e A332502   0
%e A332502   1   1
%e A332502   2   2   3
%e A332502   3   3   4   4
%e A332502   4   4   5   5   6
%e A332502   5   5   6   6   7   8
%e A332502   6   6   7   7   8   9   9
%t A332502 t[n_, k_] := Floor[n + k*GoldenRatio];
%t A332502 Grid[Table[t[n, k], {n, 0, 10}, {k, 0, 10}]] (* array *)
%t A332502 u = Table[t[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten  (* sequence *)
%Y A332502 Cf. A000210, A001950, A001622, A084531, A167267, A019446.
%K A332502 nonn,tabl,easy
%O A332502 0,4
%A A332502 _Clark Kimberling_, May 08 2020