This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332510 #9 Feb 16 2025 08:33:59 %S A332510 1,0,1,2,1,2,1,2,5,2,1,4,5,4,3,4,3,6,7,6,7,4,3,8,7,6,7,8,9,8,9,10,11, %T A332510 8,5,10,9,10,11,10,9,12,13,12,13,12,11,16,17,12,13,12,13,16,13,14,15, %U A332510 14,13,16,15,16,17,20,19,18,19,18,19,14,15,22,23,22,19,22,21,20,21,20,23,20,19,26,23 %N A332510 a(n) = Sum_{k=1..n} lambda(floor(n/k)), where lambda = A008836. %H A332510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LiouvilleFunction.html">Liouville Function</a> %F A332510 G.f.: (1/(1 - x)) * ((theta_3(x) - 1) / 2 - Sum_{k>=2} lambda(k-1) * x^k / (1 - x^k)). %F A332510 a(n) = floor(sqrt(n)) - Sum_{k=1..n} Sum_{d|k, d > 1} lambda(d-1). %F A332510 Sum_{k=1..n} mu(k) * a(floor(n/k)) = lambda(n). %t A332510 Table[Sum[LiouvilleLambda[Floor[n/k]], {k, 1, n}], {n, 1, 85}] %t A332510 Table[Floor[Sqrt[n]] - Sum[DivisorSum[k, LiouvilleLambda[# - 1] &, # > 1 &], {k, 1, n}], {n, 1, 85}] %t A332510 nmax = 85; CoefficientList[Series[(1/(1 - x)) ((EllipticTheta[3, 0, x] - 1)/2 - Sum[LiouvilleLambda[k - 1] x^k/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x] // Rest %o A332510 (PARI) a(n) = sum(k=1, n, (-1)^bigomega(n\k)); \\ _Michel Marcus_, Feb 14 2020 %Y A332510 Cf. A000196, A002819, A006218, A008683, A008836, A317625, A332509. %K A332510 nonn %O A332510 1,4 %A A332510 _Ilya Gutkovskiy_, Feb 14 2020