cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332525 Decimal expansion of the minimal distance between (0,0) and the branch of the graph of y = tan x that passes through (Pi, 0).

This page as a plain text file.
%I A332525 #12 Mar 20 2025 04:58:01
%S A332525 2,5,5,7,0,1,5,6,1,4,2,4,1,3,5,8,5,2,6,0,1,3,6,6,3,5,4,1,9,0,6,7,7,1,
%T A332525 3,7,9,6,9,9,9,8,9,0,8,9,7,8,1,2,2,8,7,7,1,8,6,6,8,9,0,4,7,4,9,1,3,7,
%U A332525 0,4,0,1,1,5,5,6,7,8,6,6,2,0,0,5,1,2
%N A332525 Decimal expansion of the minimal distance between (0,0) and the branch of the graph of y = tan x that passes through (Pi, 0).
%C A332525 Let T be the branch of the graph of y = tan x that passes through (Pi,0). There is a unique point (u,v) on T that is closer to (0,0) than any other point on T. Let d = distance between (u,v) and (0,0).
%C A332525 The first code in the Mathematica section gives
%C A332525   u = 2.319805307509200010738867057136510870483647988277... ;
%C A332525   v = -1.07556133564118881053529612226074179471679754375... ;
%C A332525   d = 2.557015614241358526013663541906771379699989089781... .
%C A332525 The second code shows (u,v) as the intersection of T and the circle centered at (0,0) with radius d.
%C A332525 The third code shows minimal distance-to-origin points on 16 branches of the tangent function.
%F A332525 u = - sin u sec^3 u.
%F A332525 v = tan u.
%F A332525 d = sqrt(u^2 + v^2).
%e A332525 2.557015614241358526013663541906771379699989089781...
%t A332525 (* This code computes (x,y) coordinates and the minimal distance. *)
%t A332525 x = x /. FindRoot[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},
%t A332525    WorkingPrecision -> 150]
%t A332525 y = Tan[x]
%t A332525 d = Sqrt[x^2 + Tan[x]^2]
%t A332525 RealDigits[x][[1]]
%t A332525 RealDigits[y][[1]]
%t A332525 RealDigits[d][[1]]
%t A332525 (* _Peter J. C. Moses_, May 04 2020 *)
%t A332525 (* This code shows the two points on the graph of y = tan x and on a circle whose radius is the minimal distance. *)
%t A332525 g1 = Plot[Tan[x], {x, -2 \[Pi], 2 \[Pi]}, AspectRatio -> 1];
%t A332525 g2 = Graphics[Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2] &[x /. FindRoot[
%t A332525        FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},
%t A332525        WorkingPrecision -> 30]]]];
%t A332525 Show[g1, g2]
%t A332525 (* _Peter J. C. Moses_, May 04 2020 *)
%t A332525 (* This code shows minimal distance points on 16 branches of the tangent function. *)
%t A332525 max = 25;
%t A332525 ptX = Table[x /. FindRoot[# == 0, {x, nn}, WorkingPrecision -> 10], {nn, 2,
%t A332525       max, Pi}] &[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]]];
%t A332525 Show[Plot[Tan[x], {x, -#, #}, PlotRange -> {-#, #}] &[max],
%t A332525    Map[Graphics[{Red, Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2]]}] &, #],
%t A332525    Map[Graphics[{PointSize[Large], Point[-{#, Tan[#]}], Point[{0, 0}],
%t A332525         Point[{#, Tan[#]}]}] &, #], AspectRatio -> Automatic,
%t A332525         ImageSize -> 600] &[ptX]
%t A332525 (* _Peter J. C. Moses_, May 05 2020 *)
%Y A332525 Cf. A332526, A332527.
%K A332525 nonn,cons
%O A332525 1,1
%A A332525 _Clark Kimberling_, Jun 15 2020