cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332526 Decimal expansion of the minimal distance between distinct branches of the tangent function; see Comments.

This page as a plain text file.
%I A332526 #5 Jun 15 2020 13:38:24
%S A332526 2,3,7,5,0,6,9,1,4,6,0,4,0,1,7,6,3,4,9,4,3,9,8,5,1,5,5,8,7,7,8,9,8,2,
%T A332526 4,8,7,8,6,6,2,6,7,8,0,6,5,0,8,8,4,1,7,9,2,9,2,6,9,8,5,6,4,5,9,7,5,4,
%U A332526 8,6,6,7,0,2,9,6,9,1,3,1,6,3,3,4,1,1
%N A332526 Decimal expansion of the minimal distance between distinct branches of the tangent function; see Comments.
%C A332526 Let T0 and T1 be the branches of the graph of y = tan x that passes through (0,0,) and (Pi,0), respectively. There exist points P = (p,q) on T0 and U = (u,v) on T1 such that the distance between P and U is the minimal distance, d, between points on T0 and T1.
%C A332526 u = 2.549082584017596768984130292562154758705824602711...
%C A332526 v = -0.67319711901285205370684801604861382107848678888...
%C A332526 p = Pi - u
%C A332526 q = - v
%C A332526 d = 2.375069146040176349439851558778982487866267806508...
%e A332526 minimal distance = 2.375069146040176349439851558778982487866267806508...
%t A332526 min = Quiet[FindMinimum[Sqrt[(#[[1]][[1]] - #[[2]][[1]])^2 + (#[[1]][[2]] - \
%t A332526 #[[2]][[2]])^2] &[{{#, Tan[#]} &[x /. FindRoot[# Cos[#]^2 - x Cos[#]^2 + Tan[#] == Tan[x], {x, 0}, WorkingPrecision -> 500]], {#, Tan[#]} &[#]} &[y]], {y, 2}, WorkingPrecision -> 100]]
%t A332526 Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, 0, Pi}, AspectRatio -> Automatic, ImageSize -> 300, PlotRange -> {-2, 2}], Graphics[{PointSize[Large], Point[{Pi/2, 0}], Point[{#, Tan[#]}], Point[{Pi - #, -Tan[#]}]}]] &[y /. min[[2]][[1]]]
%t A332526 (* _Peter J. C. Moses_, May 06 2020 *)
%Y A332526 Cf. A332500, A332525, A332527.
%K A332526 nonn,cons
%O A332526 1,1
%A A332526 _Clark Kimberling_, Jun 15 2020