This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332526 #5 Jun 15 2020 13:38:24 %S A332526 2,3,7,5,0,6,9,1,4,6,0,4,0,1,7,6,3,4,9,4,3,9,8,5,1,5,5,8,7,7,8,9,8,2, %T A332526 4,8,7,8,6,6,2,6,7,8,0,6,5,0,8,8,4,1,7,9,2,9,2,6,9,8,5,6,4,5,9,7,5,4, %U A332526 8,6,6,7,0,2,9,6,9,1,3,1,6,3,3,4,1,1 %N A332526 Decimal expansion of the minimal distance between distinct branches of the tangent function; see Comments. %C A332526 Let T0 and T1 be the branches of the graph of y = tan x that passes through (0,0,) and (Pi,0), respectively. There exist points P = (p,q) on T0 and U = (u,v) on T1 such that the distance between P and U is the minimal distance, d, between points on T0 and T1. %C A332526 u = 2.549082584017596768984130292562154758705824602711... %C A332526 v = -0.67319711901285205370684801604861382107848678888... %C A332526 p = Pi - u %C A332526 q = - v %C A332526 d = 2.375069146040176349439851558778982487866267806508... %e A332526 minimal distance = 2.375069146040176349439851558778982487866267806508... %t A332526 min = Quiet[FindMinimum[Sqrt[(#[[1]][[1]] - #[[2]][[1]])^2 + (#[[1]][[2]] - \ %t A332526 #[[2]][[2]])^2] &[{{#, Tan[#]} &[x /. FindRoot[# Cos[#]^2 - x Cos[#]^2 + Tan[#] == Tan[x], {x, 0}, WorkingPrecision -> 500]], {#, Tan[#]} &[#]} &[y]], {y, 2}, WorkingPrecision -> 100]] %t A332526 Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, 0, Pi}, AspectRatio -> Automatic, ImageSize -> 300, PlotRange -> {-2, 2}], Graphics[{PointSize[Large], Point[{Pi/2, 0}], Point[{#, Tan[#]}], Point[{Pi - #, -Tan[#]}]}]] &[y /. min[[2]][[1]]] %t A332526 (* _Peter J. C. Moses_, May 06 2020 *) %Y A332526 Cf. A332500, A332525, A332527. %K A332526 nonn,cons %O A332526 1,1 %A A332526 _Clark Kimberling_, Jun 15 2020