cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332527 Decimal expansion of the maximal curvature of the tangent function.

This page as a plain text file.
%I A332527 #8 Jun 01 2022 12:16:31
%S A332527 3,7,0,7,8,2,5,8,3,0,8,1,0,8,8,7,7,4,0,0,4,8,7,1,8,5,1,2,0,2,3,9,3,8,
%T A332527 0,7,6,9,8,4,8,0,7,9,5,9,2,9,5,7,5,6,4,0,5,5,7,3,9,3,3,0,3,0,3,4,1,3,
%U A332527 4,2,7,6,5,8,3,6,5,5,4,7,8,5,1,6,5,1
%N A332527 Decimal expansion of the maximal curvature of the tangent function.
%C A332527 The maximal curvature of the graph of y = tan x occurs at two points (x,y) on every branch.  One of the points has y > 0. Let T be the branch passes through (0,0) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v):
%C A332527 u = 0.69370020859538391768128598538590650878367123906075077978...
%C A332527 v = 0.83157590509648960702865222211498485994964124481665011305...
%C A332527 K = 0.37078258308108877400487185120239380769848079592957564055...
%C A332527 The osculating circle at (u,v) has
%C A332527 center = (x,y) = (-1.627936796879617446318318..., 2.204092389413177659055893...) .
%C A332527 radius = 1/K = 2.696998310142587559290309046607440826421048...
%e A332527 maximal curvature: K = 0.370782583081088774004871851202393807698480795929575640...
%t A332527 centMin = {xMin = ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],
%t A332527    Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]};
%t A332527 {centOsc, rOsc} = {{-(1/2) Cot[#1] (1 + Sec[#1]^4) + #1,
%t A332527       Cot[#1] - 1/4 Sin[2 #1] + (3 Tan[#1])/2},
%t A332527      Sqrt[1/4 Cos[#1]^4 Cot[#1]^2 (1 + Sec[#1]^4)^3]} &[xMin];
%t A332527 Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 +
%t A332527       Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, -5, 3},
%t A332527     AspectRatio -> Automatic, ImageSize -> 500, PlotRange -> {-2, 4}],
%t A332527     Graphics[{PointSize[Medium], Circle[centOsc, rOsc],
%t A332527      Point[centOsc], Point[centMin]}]] &[xMin]
%t A332527 N[centOsc, 100]  (* center of osculating circle *)
%t A332527 N[rOsc, 100]  (* radius of osculating circle *)
%t A332527 N[{ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],
%t A332527   Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &,
%t A332527    2]}, 100] (* maximal curvature point *)
%t A332527 N[1/rOsc, 100]  (* curvature *)
%t A332527 (* _Peter J. C. Moses_, May 07 2020 *)
%Y A332527 Cf. A332527.
%K A332527 nonn,cons
%O A332527 0,1
%A A332527 _Clark Kimberling_, Jun 15 2020