This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332527 #8 Jun 01 2022 12:16:31 %S A332527 3,7,0,7,8,2,5,8,3,0,8,1,0,8,8,7,7,4,0,0,4,8,7,1,8,5,1,2,0,2,3,9,3,8, %T A332527 0,7,6,9,8,4,8,0,7,9,5,9,2,9,5,7,5,6,4,0,5,5,7,3,9,3,3,0,3,0,3,4,1,3, %U A332527 4,2,7,6,5,8,3,6,5,5,4,7,8,5,1,6,5,1 %N A332527 Decimal expansion of the maximal curvature of the tangent function. %C A332527 The maximal curvature of the graph of y = tan x occurs at two points (x,y) on every branch. One of the points has y > 0. Let T be the branch passes through (0,0) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v): %C A332527 u = 0.69370020859538391768128598538590650878367123906075077978... %C A332527 v = 0.83157590509648960702865222211498485994964124481665011305... %C A332527 K = 0.37078258308108877400487185120239380769848079592957564055... %C A332527 The osculating circle at (u,v) has %C A332527 center = (x,y) = (-1.627936796879617446318318..., 2.204092389413177659055893...) . %C A332527 radius = 1/K = 2.696998310142587559290309046607440826421048... %e A332527 maximal curvature: K = 0.370782583081088774004871851202393807698480795929575640... %t A332527 centMin = {xMin = ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]], %t A332527 Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]}; %t A332527 {centOsc, rOsc} = {{-(1/2) Cot[#1] (1 + Sec[#1]^4) + #1, %t A332527 Cot[#1] - 1/4 Sin[2 #1] + (3 Tan[#1])/2}, %t A332527 Sqrt[1/4 Cos[#1]^4 Cot[#1]^2 (1 + Sec[#1]^4)^3]} &[xMin]; %t A332527 Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + %t A332527 Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, -5, 3}, %t A332527 AspectRatio -> Automatic, ImageSize -> 500, PlotRange -> {-2, 4}], %t A332527 Graphics[{PointSize[Medium], Circle[centOsc, rOsc], %t A332527 Point[centOsc], Point[centMin]}]] &[xMin] %t A332527 N[centOsc, 100] (* center of osculating circle *) %t A332527 N[rOsc, 100] (* radius of osculating circle *) %t A332527 N[{ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]], %t A332527 Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, %t A332527 2]}, 100] (* maximal curvature point *) %t A332527 N[1/rOsc, 100] (* curvature *) %t A332527 (* _Peter J. C. Moses_, May 07 2020 *) %Y A332527 Cf. A332527. %K A332527 nonn,cons %O A332527 0,1 %A A332527 _Clark Kimberling_, Jun 15 2020