cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332528 Decimal expansion of the maximal curvature of the secant function.

This page as a plain text file.
%I A332528 #8 Jun 01 2022 12:16:45
%S A332528 1,1,1,5,3,9,8,6,1,6,3,6,7,0,8,4,7,8,8,5,2,3,6,7,2,0,2,2,8,1,3,2,6,6,
%T A332528 5,7,6,5,4,7,5,1,2,0,8,1,8,4,5,3,1,7,7,3,7,4,0,4,4,4,1,0,3,3,5,8,5,6,
%U A332528 3,4,6,7,6,8,6,4,7,3,9,2,1,7,4,3,2,3
%N A332528 Decimal expansion of the maximal curvature of the secant function.
%C A332528 The maximal curvature of the graph of y = sec x occurs at two points (x,y) on every branch.  One of the points has y > 0. Let T be the branch passes through (0,1) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v):
%C A332528 u = 0.469952511643664772466732023628843853062603014858623133147...
%C A332528 v = 1.121592022152314185447110000884194699579672726085862403985...
%C A332528 K = 1.11539861636708478852367202281326657654751208184531773740...
%C A332528 The osculating circle at (u,v) has
%C A332528 center = (x,y) = (0.02618081309772817465,,,, 1.900598757881329358432040976889617...).
%C A332528 radius = 1/K = 0.896540470219566446984489512566284091376257661443...
%C A332528 maximal curvature: K = 1.11539861636708478852367202281326657654751208184531773740...
%t A332528 maxC = ArcCos[   Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/3]];
%t A332528 centerMaxC = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 +
%t A332528        Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/
%t A332528       2} /. x -> maxC;
%t A332528 rMin = (Sqrt[(7 + Cos[4 x])^3] Sec[x]^3)/(Sqrt[2] 8 (3 - Cos[2 x])) /. x -> maxC;
%t A332528 Show[Plot[Sec[x], {x, 0 - 3/2, 2}],
%t A332528 Graphics[{PointSize[Large], Red, Point[centerMaxC],
%t A332528    Point[{maxC, Sec[maxC]}], Circle[centerMaxC, rMin],
%t A332528    Line[{centerMaxC, {maxC, Sec[maxC]}}]}], AspectRatio -> Automatic,
%t A332528 PlotRange -> {0, 2}]
%t A332528 x = ArcCos[Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/
%t A332528     3]];  (* maximal curvature occurs at (x, sec x) *)
%t A332528 {N[x, 150], N[Sec[x], 150]}
%t A332528 {cx, cy} = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/2}; (* center of osculating circle *)
%t A332528 {N[cx, 150], N[cy, 150]}
%t A332528 r = N[Sqrt[(x - cx)^2 + (Sec[x] - cy)^2], 150] (* radius of curvature *)
%t A332528 1/r  (* curvature *)
%t A332528 kr = RealDigits[1/r][[1]]
%t A332528 (* _Peter J. C. Moses_, May 07 2020 *)
%Y A332528 Cf. A332527.
%K A332528 nonn,cons
%O A332528 0,4
%A A332528 _Clark Kimberling_, Jun 21 2020