This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332528 #8 Jun 01 2022 12:16:45 %S A332528 1,1,1,5,3,9,8,6,1,6,3,6,7,0,8,4,7,8,8,5,2,3,6,7,2,0,2,2,8,1,3,2,6,6, %T A332528 5,7,6,5,4,7,5,1,2,0,8,1,8,4,5,3,1,7,7,3,7,4,0,4,4,4,1,0,3,3,5,8,5,6, %U A332528 3,4,6,7,6,8,6,4,7,3,9,2,1,7,4,3,2,3 %N A332528 Decimal expansion of the maximal curvature of the secant function. %C A332528 The maximal curvature of the graph of y = sec x occurs at two points (x,y) on every branch. One of the points has y > 0. Let T be the branch passes through (0,1) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v): %C A332528 u = 0.469952511643664772466732023628843853062603014858623133147... %C A332528 v = 1.121592022152314185447110000884194699579672726085862403985... %C A332528 K = 1.11539861636708478852367202281326657654751208184531773740... %C A332528 The osculating circle at (u,v) has %C A332528 center = (x,y) = (0.02618081309772817465,,,, 1.900598757881329358432040976889617...). %C A332528 radius = 1/K = 0.896540470219566446984489512566284091376257661443... %C A332528 maximal curvature: K = 1.11539861636708478852367202281326657654751208184531773740... %t A332528 maxC = ArcCos[ Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/3]]; %t A332528 centerMaxC = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + %t A332528 Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/ %t A332528 2} /. x -> maxC; %t A332528 rMin = (Sqrt[(7 + Cos[4 x])^3] Sec[x]^3)/(Sqrt[2] 8 (3 - Cos[2 x])) /. x -> maxC; %t A332528 Show[Plot[Sec[x], {x, 0 - 3/2, 2}], %t A332528 Graphics[{PointSize[Large], Red, Point[centerMaxC], %t A332528 Point[{maxC, Sec[maxC]}], Circle[centerMaxC, rMin], %t A332528 Line[{centerMaxC, {maxC, Sec[maxC]}}]}], AspectRatio -> Automatic, %t A332528 PlotRange -> {0, 2}] %t A332528 x = ArcCos[Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/ %t A332528 3]]; (* maximal curvature occurs at (x, sec x) *) %t A332528 {N[x, 150], N[Sec[x], 150]} %t A332528 {cx, cy} = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/2}; (* center of osculating circle *) %t A332528 {N[cx, 150], N[cy, 150]} %t A332528 r = N[Sqrt[(x - cx)^2 + (Sec[x] - cy)^2], 150] (* radius of curvature *) %t A332528 1/r (* curvature *) %t A332528 kr = RealDigits[1/r][[1]] %t A332528 (* _Peter J. C. Moses_, May 07 2020 *) %Y A332528 Cf. A332527. %K A332528 nonn,cons %O A332528 0,4 %A A332528 _Clark Kimberling_, Jun 21 2020