cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332530 Numbers k such that k and k + 1 has the same value of A319445, the equivalent of the Euler totient function in the ring of Eisenstein integers.

This page as a plain text file.
%I A332530 #28 Mar 20 2022 16:06:40
%S A332530 34,51,152,679,1065,1845,6525,12122,12970,15656,38607,48398,175473,
%T A332530 272935,401505,953342,1035895,1210054,1222988,1406665,1589245,1607095,
%U A332530 2108186,2116975,2272425,2500615,2751160,3399591,4542225,5298559,5412986,6813585,6898736,7115553
%N A332530 Numbers k such that k and k + 1 has the same value of A319445, the equivalent of the Euler totient function in the ring of Eisenstein integers.
%H A332530 Amiram Eldar, <a href="/A332530/b332530.txt">Table of n, a(n) for n = 1..152</a>
%e A332530 34 is a term since A319445(34) = A319445(35) = 864.
%t A332530 f[p_, e_] := If[p == 3, 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; e1 = eisPhi[1]; Do[e2 = eisPhi[n]; If[e1 == e2, AppendTo[seq, n - 1]]; e1 = e2, {n, 2, 10^6}]; seq
%Y A332530 Cf. A001274, A287055, A293184, A319445, A326403, A332316.
%K A332530 nonn
%O A332530 1,1
%A A332530 _Amiram Eldar_, Feb 15 2020