This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332534 #24 Nov 26 2020 12:19:05 %S A332534 1,2,3,4,38,68,80,98,122,128,146,150,158,164,188,192,206,212,218,220, %T A332534 222,224,248,252,278,290,292,302,306,308,326,332,338,344,368,374,380, %U A332534 398,410,416,428,432,440,458,476,488,500,510,518,522,530,532,536,542 %N A332534 Numbers that are not of the form prime + 2^(2^k) + m! with k >= 0, m >= 0. %H A332534 Alois P. Heinz, <a href="/A332534/b332534.txt">Table of n, a(n) for n = 1..10000</a> %H A332534 Christian Elsholtz, Florian Luca, and Stefan Planitzer, <a href="https://doi.org/10.1007/s11139-017-9972-8">Romanov type problems</a>, The Ramanujan Journal 47.2 (2018): 267-289. %p A332534 q:= proc(n) local k, m; %p A332534 for k from 0 while 2^(2^k)<n do %p A332534 for m while 2^(2^k)+m!<n do %p A332534 if isprime(n-2^(2^k)-m!) then return false fi: %p A332534 od %p A332534 od; true %p A332534 end: %p A332534 select(q, [$1..600])[]; # _Alois P. Heinz_, Feb 15 2020 %t A332534 q[n_] := Module[{k, m}, For[k = 0, 2^(2^k) < n, k++, For[m = 1, 2^(2^k) + m! < n, m++, If[PrimeQ[n - 2^(2^k) - m!] , Return[False]]]]; True]; %t A332534 Select[Range[600], q] (* _Jean-François Alcover_, Nov 26 2020, after _Alois P. Heinz_ *) %Y A332534 Cf. A218044, A332379, A332535. %K A332534 nonn %O A332534 1,2 %A A332534 _N. J. A. Sloane_, Feb 15 2020