This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332542 #52 Aug 27 2021 11:19:53 %S A332542 2,7,14,3,6,47,14,4,10,20,25,11,5,31,254,15,18,55,6,10,22,44,14,23,11, %T A332542 7,86,27,30,959,62,16,34,8,73,35,17,24,163,39,42,127,9,22,46,92,62,19, %U A332542 23,15,158,51,10,20,75,28,58,116,121,59,29,127,254,11 %N A332542 a(n) is the smallest k such that n+(n+1)+(n+2)+...+(n+k) is divisible by n+k+1. %C A332542 Note that (n+(n+1)+(n+2)+...+(n+k))/(n+k+1) = A332544(n)/(n+k+1) = A082183(n-1). See the Myers et al. link for proof. - _N. J. A. Sloane_, Apr 30 2020 %C A332542 We can always take k = n^2-2*n-1, for then the sum in the definition becomes (n+1)*n*(n-1)*(n-2)/2, which is an integral multiple of n+k+1 = n*(n-1). So a(n) always exists. - _N. J. A. Sloane_, Feb 20 2020 %H A332542 Seiichi Manyama, <a href="/A332542/b332542.txt">Table of n, a(n) for n = 3..10000</a> %H A332542 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], 2020-2021. %e A332542 n=4: we get 4 -> 4+5=9 -> 9+6=15 -> 15+7=22 -> 22+8=30 -> 30+9=39 -> 39+10=49 -> 49+11=60, which is divisible by 12, and took k=7 steps, so a(4) = 7. Also A332543(4) = 12, A332544(4) = 60, and A082183(3) = 60/12 = 5. %p A332542 grow2 := proc(n,M) local p,q,k; # searches out to a limit of M %p A332542 # returns n, k (A332542(n)), n+k+1 (A332543(n)), p (A332544(n)), and q (which appears to match A082183(n-1)) %p A332542 for k from 1 to M do %p A332542 if ((k+1)*n + k*(k+1)/2) mod (n+k+1) = 0 then %p A332542 p := (k+1)*n+k*(k+1)/2; %p A332542 q := p/(n+k+1); return([n,k,n+k+1,p,q]); %p A332542 fi; %p A332542 od: %p A332542 # if no success, return -1's %p A332542 [n,-1,-1,-1,-1]; end; # _N. J. A. Sloane_, Feb 18 2020 %t A332542 a[n_] := NestWhile[#1+1&,0,!IntegerQ[Divide[(#+1)*n+#*(#+1)/2,n+#+1]]&] %t A332542 a/@Range[3,100] (* _Bradley Klee_, Apr 30 2020 *) %o A332542 (Ruby) %o A332542 def A(n) %o A332542 s = n %o A332542 t = n + 1 %o A332542 while s % t > 0 %o A332542 s += t %o A332542 t += 1 %o A332542 end %o A332542 t - n - 1 %o A332542 end %o A332542 def A332542(n) %o A332542 (3..n).map{|i| A(i)} %o A332542 end %o A332542 p A332542(100) # _Seiichi Manyama_, Feb 19 2020 %o A332542 (PARI) a(n) = my(k=1); while (sum(i=0, k, n+i) % (n+k+1), k++); k; \\ _Michel Marcus_, Aug 26 2021 %o A332542 (Python) %o A332542 def a(n): %o A332542 k, s = 1, 2*n+1 %o A332542 while s%(n+k+1) != 0: k += 1; s += n+k %o A332542 return k %o A332542 print([a(n) for n in range(3, 67)]) # _Michael S. Branicky_, Aug 26 2021 %Y A332542 Cf. A332543, A332544, A082183. %Y A332542 See A332558-A332561 for a multiplicative analog. %K A332542 nonn %O A332542 3,1 %A A332542 _Scott R. Shannon_, Feb 18 2020