This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332559 #21 Jun 06 2021 02:53:58 %S A332559 6,6,6,8,10,12,12,12,15,15,18,18,20,20,20,24,24,24,24,24,28,30,30,30, %T A332559 30,35,35,35,36,36,40,40,40,40,40,45,45,45,45,48,48,48,54,54,54,56,56, %U A332559 56,56,60,60,60,60,60,60,63,70,70,70,70,70,70,70,72,72,72 %N A332559 a(n) = n + A332558(n) + 1. %H A332559 Robert Israel, <a href="/A332559/b332559.txt">Table of n, a(n) for n = 1..10000</a> %H A332559 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020. %p A332559 f:= proc(n) local k,p; %p A332559 p:= n; %p A332559 for k from 1 do %p A332559 p:= p*(n+k); %p A332559 if (p/(n+k+1))::integer then return n+k+1 fi %p A332559 od %p A332559 end proc: %p A332559 map(f, [$1..100]); # _Robert Israel_, Feb 25 2020 %t A332559 a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[n+k+1]]]]; %t A332559 Array[a, 100] (* _Jean-François Alcover_, Jul 18 2020, after Maple *) %o A332559 (Python) %o A332559 def a(n): %o A332559 k, p = 1, n*(n+1) %o A332559 while p%(n+k+1): k += 1; p *= (n+k) %o A332559 return n + k + 1 %o A332559 print([a(n) for n in range(1, 67)]) # _Michael S. Branicky_, Jun 06 2021 %Y A332559 Cf. A061836, A332558, A332560, A332561. %K A332559 nonn %O A332559 1,1 %A A332559 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 24 2020