cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332562 a(n) = number formed by concatenating the decimal digits of 44, 45, 46, ..., 44+n.

This page as a plain text file.
%I A332562 #36 Jul 19 2024 14:41:53
%S A332562 44,4445,444546,44454647,4445464748,444546474849,44454647484950,
%T A332562 4445464748495051,444546474849505152,44454647484950515253,
%U A332562 4445464748495051525354,444546474849505152535455,44454647484950515253545556,4445464748495051525354555657
%N A332562 a(n) = number formed by concatenating the decimal digits of 44, 45, 46, ..., 44+n.
%C A332562 This is an instance of a sequence arising in A332580.
%C A332562 As of Feb 24 2020, it is an open question as to whether there is an N such that a(N) is divisible by 44+N+1. If such an N exists, N > 10^11, as shown by _Joseph Myers_ (see A332580).
%C A332562 We have now shown that N = 2783191412912. See A332580 and the attached paper. - _N. J. A. Sloane_, Apr 28 2020
%H A332562 Robert Israel, <a href="/A332562/b332562.txt">Table of n, a(n) for n = 0..350</a>
%H A332562 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020.
%p A332562 a:= n-> parse(cat($44..44+n)):
%p A332562 seq(a(n), n=0..14);  # _Alois P. Heinz_, Feb 24 2020
%t A332562 Nest[Append[#, 10^IntegerLength[#2]*#1[[-1]] + #2 ] & @@ {#, 44 + Length@ #} &, {44}, 13] (* _Michael De Vlieger_, Feb 24 2020 *)
%t A332562 Table[FromDigits[Flatten[IntegerDigits/@Range[44,44+n]]],{n,0,20}] (* _Harvey P. Dale_, Jul 19 2024 *)
%o A332562 (Magma) [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [44..n]])): n in [44..60]]; // _Vincenzo Librandi_, Feb 26 2020
%Y A332562 Cf. A332580.
%K A332562 nonn,base
%O A332562 0,1
%A A332562 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 24 2020