cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332570 Numbers that are norm-abundant in Gaussian integers.

Original entry on oeis.org

2, 4, 5, 6, 9, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2020

Keywords

Comments

Numbers k such that N(sigma(k)) > 2*N(k) = 2*k^2, where sigma(k) = A103228(k) + i*A103229(k) is the sum of divisors of k in Gaussian integers (i is the imaginary unit), and N(z) = Re(z)^2 + Im(z)^2 is the norm of the complex number z.
The number of terms not exceeding 10^k for k = 1, 2, ... is 6, 70, 711, 7002, 69925, 701081, 7016287, 70074003, 700557394, 7007078826, ... Apparently this sequence has an asymptotic density of ~0.7.

Examples

			2 is norm-abundant since sigma(2) = 2 + 3*i and N(2 + 3*i) = 2^2 + 3^2 = 13 > 2 * 2^2 = 8.
		

References

  • Miriam Hausman, On Norm Abundant Gaussian Integers, The Journal of the Indian Mathematical Society, Vol. 49 (1987), pp. 119-123.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 120.

Crossrefs

Programs

  • Mathematica
    normAbQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; Select[Range[100], normAbQ]