This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332577 #7 Feb 16 2025 08:33:59 %S A332577 1,1,1,2,2,3,4,5,6,8,9,11,14,16,19,23,25,30,36,40,45,54,59,68,79,86, %T A332577 96,112,121,135,155,168,188,214,230,253,284,308,337,380,407,445,497, %U A332577 533,580,645,689,748,828,885,956,1053,1124,1212,1330,1415,1519,1665,1771 %N A332577 Number of integer partitions of n covering an initial interval of positive integers with unimodal run-lengths. %C A332577 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332577 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332577 The a(1) = 1 through a(9) = 8 partitions: %e A332577 1 11 21 211 221 321 2221 3221 3321 %e A332577 111 1111 2111 2211 3211 22211 22221 %e A332577 11111 21111 22111 32111 32211 %e A332577 111111 211111 221111 222111 %e A332577 1111111 2111111 321111 %e A332577 11111111 2211111 %e A332577 21111111 %e A332577 111111111 %t A332577 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A332577 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332577 Table[Length[Select[IntegerPartitions[n],normQ[#]&&unimodQ[Length/@Split[#]]&]],{n,0,30}] %Y A332577 Not requiring unimodality gives A000009. %Y A332577 A version for compositions is A227038. %Y A332577 Not requiring the partition to cover an initial interval gives A332280. %Y A332577 The complement is counted by A332579. %Y A332577 Unimodal compositions are A001523. %Y A332577 Cf. A007052, A011782, A025065, A100883, A107429, A115981, A332281, A332283, A332638, A332639, A332728. %K A332577 nonn %O A332577 0,4 %A A332577 _Gus Wiseman_, Feb 24 2020