This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332578 #18 Mar 01 2020 05:40:27 %S A332578 1,1,2,4,7,13,21,36,57,91,140,217,323,485,711,1039,1494,2144,3032, %T A332578 4279,5970,8299,11438,15708,21403,29065,39218,52725,70497,93941, %U A332578 124562,164639,216664,284240,371456,484004,628419,813669,1050144,1351757,1734873,2221018,2835613 %N A332578 Number of compositions of n whose negation is unimodal. %C A332578 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332578 A composition of n is a finite sequence of positive integers summing to n. %H A332578 Vaclav Kotesovec, <a href="/A332578/b332578.txt">Table of n, a(n) for n = 0..3000</a> (terms 0..1000 from Andrew Howroyd) %F A332578 a(n) + A332669(n) = 2^(n - 1). %F A332578 G.f.: 1 + Sum_{j>0} x^j/((1 - x^j)*(Product_{k>j} 1 - x^k)^2). - _Andrew Howroyd_, Mar 01 2020 %F A332578 a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - _Vaclav Kotesovec_, Mar 01 2020 %e A332578 The a(1) = 1 through a(5) = 13 compositions: %e A332578 (1) (2) (3) (4) (5) %e A332578 (11) (12) (13) (14) %e A332578 (21) (22) (23) %e A332578 (111) (31) (32) %e A332578 (112) (41) %e A332578 (211) (113) %e A332578 (1111) (122) %e A332578 (212) %e A332578 (221) %e A332578 (311) %e A332578 (1112) %e A332578 (2111) %e A332578 (11111) %t A332578 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332578 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[-#]&]],{n,0,10}] %t A332578 nmax = 50; CoefficientList[Series[1 + Sum[x^j*(1 - x^j)/Product[1 - x^k, {k, j, nmax - j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 01 2020 *) %o A332578 (PARI) seq(n)={Vec(1 + sum(j=1, n, x^j/((1-x^j)*prod(k=j+1, n-j, 1 - x^k + O(x*x^(n-j)))^2)))} \\ _Andrew Howroyd_, Mar 01 2020 %Y A332578 Dominated by A001523 (unimodal compositions). %Y A332578 The strict case is A072706. %Y A332578 The case that is unimodal also is A329398. %Y A332578 The complement is counted by A332669. %Y A332578 Row sums of A332670. %Y A332578 Unimodal normal sequences appear to be A007052. %Y A332578 Non-unimodal compositions are A115981. %Y A332578 Non-unimodal normal sequences are A328509. %Y A332578 Partitions whose run-lengths are unimodal are A332280. %Y A332578 Partitions whose negated run-lengths are unimodal are A332638. %Y A332578 Numbers whose unsorted prime signature is not unimodal are A332642. %Y A332578 Partitions whose negated 0-appended differences are unimodal are A332728. %Y A332578 Cf. A011782, A072704, A107429, A227038, A332282, A332283, A332639, A332741, A332742, A332744, A332832, A332870. %K A332578 nonn %O A332578 0,3 %A A332578 _Gus Wiseman_, Feb 28 2020 %E A332578 Terms a(26) and beyond from _Andrew Howroyd_, Mar 01 2020