This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332579 #11 Feb 16 2025 08:33:59 %S A332579 0,0,0,0,0,0,0,0,0,0,1,1,1,2,3,4,7,8,10,14,19,22,30,36,43,56,69,80, %T A332579 101,121,141,172,202,234,282,332,384,452,527,602,706,815,929,1077, %U A332579 1236,1403,1615,1842,2082,2379,2702,3044,3458,3908,4388,4963,5589,6252 %N A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths. %C A332579 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A332579 Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal. %H A332579 MathWorld, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %e A332579 The a(10) = 1 through a(16) = 7 partitions: %e A332579 33211 332111 3321111 333211 433211 443211 443221 %e A332579 33211111 3332111 4332111 3333211 %e A332579 332111111 33321111 4432111 %e A332579 3321111111 33322111 %e A332579 43321111 %e A332579 333211111 %e A332579 33211111111 %t A332579 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A332579 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A332579 Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}] %Y A332579 The complement is counted by A332577. %Y A332579 Not requiring the partition to cover an initial interval gives A332281. %Y A332579 The opposite version is A332286. %Y A332579 A version for compositions is A332743. %Y A332579 Partitions covering an initial interval of positive integers are A000009. %Y A332579 Unimodal compositions are A001523. %Y A332579 Non-unimodal permutations are A059204. %Y A332579 Non-unimodal compositions are A115981. %Y A332579 Non-unimodal normal sequences are A328509. %Y A332579 Numbers whose prime signature is not unimodal are A332282. %Y A332579 Partitions whose 0-appended first differences are unimodal are A332283. %Y A332579 Compositions whose negated run-lengths are not unimodal are A332727. %Y A332579 Cf. A007052, A100883, A107429, A227038, A332280, A332284, A332638, A332639, A332640, A332671, A332672, A332728. %K A332579 nonn %O A332579 0,14 %A A332579 _Gus Wiseman_, Feb 25 2020