This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332584 #52 Jan 02 2024 14:45:49 %S A332584 2,82,1888,6842,6,50,20,10,1320,28,208,32,66,148,1008,60,192,124536, %T A332584 282,46,128,32,28,86,40,33198,36,42,346,738,1532,246,70,68,102,306,56, %U A332584 20226,78316,10778,328,2432,738,2783191412956,48,746,8350,398,70,150,2300,21378 %N A332584 a(n) = minimal value of n+k (with k >= 1) such that the concatenation of the decimal digits of n,n+1,...,n+k is divisible by n+k+1, or -1 if no such n+k exists. %C A332584 Certainly a(n) must be even, since no odd number can be divisible by an even number. %C A332584 The values of k = a(n)-n are given in the companion sequence A332580, which also has an extended table of values. %C A332584 A heuristic argument suggests that n+k should always exist. %H A332584 J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020. %F A332584 a(n) = n + A332580(n) (trivially from the definitions). %e A332584 a(1) = 2 as '1' || '2' = '12', which is divisible by 3 (where || denotes decimal concatenation). %e A332584 a(7) = 20 as '7' || '8' || '9' || '10' || '11' || '12' || ... || '20' = 7891011121314151617181920, which is divisible by 21. %e A332584 a(8) = 10 as '8' || '9' || '10' = 8910, which is divisible by 11. %e A332584 a(2) = 82: the concatenation 2 || 3 || ... || 82 is %e A332584 23456789101112131415161718192021222324252627282930313233343536373839\ %e A332584 40414243444546474849505152535455565758596061626364656667686970717273747\ %e A332584 576777879808182, which is divisible by 83. %p A332584 grow := proc(n,M) # searches out to a limit of M, returns [n,n+k] or [n,-1] if no k was found %p A332584 local R,i; %p A332584 R:=n; %p A332584 for i from n+1 to M do %p A332584 R:=R*10^length(i)+i; %p A332584 if (i mod 2) = 0 then %p A332584 if (R mod (i+1)) = 0 then return([n, i]); fi; %p A332584 fi; %p A332584 od: %p A332584 [n, -1]; %p A332584 end; %p A332584 for n from 1 to 100 do lprint(grow(n,20000)); od; %o A332584 (PARI) apply( {A332584(n,L=10^#Str(n),c=n)= until((c=c*L+n)%(n+1)==0, n++<L||L*=10);n}, [1..17]) \\ _M. F. Hasler_, Feb 20 2020 %o A332584 (Python) %o A332584 def A332584(n): %o A332584 r, m = n, n + 1 %o A332584 while True: %o A332584 r = r*10**(len(str(m))) + m %o A332584 if m % 2 == 0 and r % (m+1) == 0: %o A332584 return m %o A332584 m += 1 # _Chai Wah Wu_, Jun 12 2020 %Y A332584 Cf. A061836 (multiplication instead of concatenation), A332580, A332585. %K A332584 nonn,base %O A332584 1,1 %A A332584 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 16 2020 %E A332584 a(44) onwards (using A332580) added by _Andrew Howroyd_, Jan 02 2024