A332585 Number of digits in the number formed by concatenating the digits of n, n+1, ..., A332584(n), or -1 if A332584(n) = -1.
2, 154, 6443, 26258, 2, 86, 25, 4, 4165, 38, 505, 42, 108, 319, 2906, 90, 445, 636086, 711, 54, 245, 22, 12, 126, 32, 154843, 20, 30, 883, 2057, 4970, 577, 76, 70, 139, 749, 40, 89959, 380407, 42715, 805, 8548, 2031
Offset: 1
Examples
For n=2, A332584(2) = 88, and the concatenation 2 || 3 || ... || 82 is 23456789101112131415161718192021222324252627282930313233343536373839\ 40414243444546474849505152535455565758596061626364656667686970717273747\ 576777879808182, which has 154 digits. So a(2) = 154.
Links
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
Formula
Let f(i) = A058183(i). Assuming A332584(n)>0, a(n) = f(A332584(n))-f(n-1) for n>1. - N. J. A. Sloane, Feb 20 2020
Comments