A332597 Number of edges in a "frame" of size n X n (see Comments in A331776 for definition).
8, 92, 360, 860, 1792, 3124, 5256, 8188, 12304, 17460, 24568, 33244, 44688, 58228, 74664, 94028, 118080, 145380, 178568, 216252, 259776, 308276, 365352, 428556, 501152, 580804, 670536, 768908, 880992, 1001764, 1138248, 1286748, 1449984, 1625300, 1817752, 2023740, 2252048, 2495476, 2759304, 3040460, 3349056
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Scott R. Shannon, Colored illustration for a(3) = 360 (there are 360 edges in this picture).
Programs
-
Maple
V := proc(m, n, q) local a, i, j; a:=0; for i from 1 to m do for j from 1 to n do if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end; f := n -> if n=1 then 8 else 28*n^2 - 44*n + 8 + 8*V(n,n,1) - 4*V(n, n, 2); fi; [seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
Python
from sympy import totient def A332597(n): return 8 if n == 1 else 4*(n-1)*(8*n-1) + 8*sum(totient(i)*(n+1-i)*(n+i+1) for i in range(2,n//2+1)) + 8*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
Formula
For n > 1, a(n) = 4*(n-1)*(8*n-1) + 8*Sum_{i=2..floor(n/2)} (n+1-i)*(n+i+1)*phi(i) + 8*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
Extensions
More terms from N. J. A. Sloane, Mar 10 2020
Comments