A332611 Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
Offset: 1
Examples
Triangle begins: [0], [2, 8], [14, 36, 80], [34, 92, 144, 208], [90, 194, 280, 356, 504], [154, 336, 432, 520, 680, 856], [288, 554, 724, 824, 996, 1184, 1512], [462, 812, 1096, 1208, 1392, 1592, 1932, 2352], [742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640], [1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016], [1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128], [2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616], ....
Formula
The first column is A324043, for which there is an explicit formula.
No formula is known for column 2, which is A332607.
For m>=n>=3 we have the (new) theorem that T(m,n) = 4*(3*m*n-m-4*n) + 2*(V(m,m,1)-2*V(m,m,2)-m^2-4*m+6) + 2*(V(n,n,1)-2*V(n,n,2)-n^2-4*n+6) where V(m,n,q) = Sum_{i = 1..m, j = 1..n, gcd(i,j)=q} (m+1-i)*(n+1-j).
Comments